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We discuss, in qualitative and quantitative fashion, the yields of hadron
resonances. We show that these yields, in general, are not in chemical equi-
librium. We evaluate the non-equilibrium abundances in a dynamic model
implementing the 1 + 2 ↔ 3 resonance formation reactions. Due to the
strength of these reactions, we show the Σ(1385) enhancement, and the
Λ(1520) suppression explicitly.

PACS numbers: 25.75.Nq, 12.38.Mh

1. Why study strange resonances and quark–gluon plasma?

We study the quark confining vacuum structure, with the objective to
liberate quarks and gluons at high temperature. The present day experi-
mental effort involves colliding heavy nuclei and this limits the domain of
deconfinement to the size of the atomic nucleus. The ‘free’ quarks and glu-
ons form a thermal gas comprising color charges, the quark–gluon plasma
— a hot soup of elementary matter, last seen in the Universe when matter
was formed at about 30 µs after the big-bang.

The temperature at which we deconfine the quark content of nucleons is
Tc ≃ 160 MeV. However, we reach in heavy ion collisions, TMax ≃ 2–5Tc.
At this relatively high temperature, we create strange quark and antiquark
pairs in an abundance which rivals that of light quarks [1]. While this is
going on, the compressed quark matter expands, the expansion consumes
the thermal pressure and energy, and ultimately the fireball of hot quarks
breaks apart at Tf < Tc. Of particular interest is the high abundance of
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antiquarks, including anti-strangeness. The high strange antimatter yield is
our evidence that we have recreated the early Universe in a laboratory set
experiment.

We are interested in understanding the physics of quark–gluon plasma in
the last moments of its existence, and thus the conditions prevailing in the
transformation of quarks and gluons into hadrons. The yields of particles
produced can be successfully described using statistical physics methods.
We use the program SHARE (Statistical HAdronization with REsonances)
for this purpose [2, 3]. The remarkable success of this model indicates that
the production of hadrons in heavy ion collisions is governed mostly by the
accessible phase space. This, in turn, implies that particles are produced in
a process resembling vapor evaporation from a hot soup. In this process,
hadrons are formed from very ‘sticky’ quarks and this helps to saturate the
probability of particle formation.

Aside of stable (under strong interactions) particles, the statistical hadro-
nization of quark–gluon plasma predicts the yields of (anti)baryon reso-
nances. Experimental results available today show that the yields of these
states do not always follow the model expectations [4–10]. Given the success
of SHARE, we interpret this as a post hadronization evolution of observable
yields [11,12]. Thus, the first objective of this report, see Sec. 2, is to explain
why, for stable particles, we can directly apply the statistical hadronization
model, while observed resonance yields are subject to post-hadronization
dynamics.

After that, we develop the kinetic model tools in Sec. 3, define the model
and the initial conditions in Sec. 4, and present, in the following Sec. 5, a de-
tailed numerical study demonstrating that Σ(1385) can be greatly enhanced
in the observed abundance compared to statistical equilibrium, while other
more stable resonances, such as Λ(1520) are suppressed.

The understanding of this behavior of strange baryons and antibaryons
and their resonances sharpens the tools available to us in the study of quark–
gluon plasma properties, at the time of phase conversion into hadrons. This
work improves the understanding of the physics of hadronization of quark–
gluon plasma, that is of the process of freezing of the deconfined vacuum.

2. Why resonances, in general, do not chemically equilibrate?

The observed stable particle yield is controlled solely by freeze-out tem-
perature, and this yield contains the decay of all resonances. However, the
resonance abundances can evolve and mix with stable particles without al-
tering the observed final stable particle yield, since there is no information in
the stable particle yield about ‘sharing’ of the yield with resonances. There-
fore, we cannot assume that resonance yields are governed by same physics
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as the final stable particle yields. We consider, as an example, the reaction

Λ + π ↔ Σ∗ , (1)

and imagine, for purpose of following simple illustration, that the system we
study comprises ONLY these three particles.

Reaction Eq. (1) does not change either the pion π or lambda Λ yield,
since all Σ∗-resonances ever made will ultimately contribute to these yields
upon resonance decay, which naturally happens before the stable particles
are observed. On the other hand, we measure the yield of Σ∗ by the invari-
ant mass method. This is done by considering all pair combination of two
presumed decay products and evaluating from the energy and momentum
of both particles the invariant mass distribution dN/dM where:

M =
√

(Eπ + EΛ)2 − (~pπ + ~pΛ)2 .

This method implies that as long as the decay products do not rescatter
after decay, that is before leaving the medium, the yield of resonances is
determined by the observed yield of the decay products. On the other hand,
we can assume that each elastic scattering deflects the momentum vector,
so that the invariant mass method fails to observe the resonance.

Given this consideration, we can evaluate the relative yield of Σ∗/Λ
assuming that the system expands very slowly (and we ignore spin and
isospin for simplicity). We are given the inelastic reaction rate, R(T )in, at
temperature T derived from the cross-section governing the inelastic reaction
Eq. (1). Similarly, we have total elastic rate, R(T )el, originating in any
elastic scattering (that is of π or Λ) in the medium. The elastic reaction
rate is proportional to the probability of not observing a Σ∗, while the
inelastic reaction rate, with the same proportionality constant, is describing
the probability of seeing a Σ∗. This means that the invariant mass method

observed relative Σ∗ yield is the ratio of inelastic scattering rate to any
reaction rate in the medium, that is,

Σ∗

Λ
=

R(Tr)in
R(Tr)in + R(Tr)el

, (2)

considering that the nucleon yield already comprises all Σ∗ → Λ decays.
Here, we denote by Tr the resonance free-streaming temperature which is
typically lower than the stable particle freeze-out condition Tf . Note that if
the elastic reactions are negligible, in this greatly simplified model all Λ are
descendants of Σ∗ and the ratio is unity.

We see, in this example, that the observed relative resonance yield is
not governed by thermal/statistical properties of the medium, but depends
decisively on the strength of the inelastic reaction rate derived from known
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resonance cross-section of reactions, such as Eq. (1). In this work, we will be
addressing realistic physical system and will focus our interest on the under-
standing of the role of the inelastic reaction rate of important resonances.
We will be following their abundance evolution as function of time t, that is
for a given function, T (t), of temperature. We thus will present our results
as a function of T and focus interest on the range Tr to Tf , where Tf is the
hadron formation temperature in QGP breakup.

3. Time evolution equations

In Fig. 1, we show the scheme of reactions which all have a noticeable
effect on Λ(1520) yield after the chemical freeze-out kinetic phase. The for-
mat of this presentation is inspired by nuclear reactions schemes. On the
vertical axis, the energy scale is shown in MeV. There are three classes of
particle states, which we denote from left to right as ‘N ’ (S = 0 baryon),
‘Σ’ (S = −1, I = 1 hyperon) and ‘Λ’ (S = −1, I = 0 hyperon).
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Fig. 1. Reactions scheme for Λ(1520) and Σ(1385) population evolution.
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Near each particle bar, we state (on-line in blue) its mass, and/or angular
momentum, and/or total width in MeV. The states Λ(1520) and Σ(1385) are
shown along with the location in energy of Λ(1520) + π and Σ(1385) + π,
respectively, both entries are connected by the curly bracket, and are high-
lighted (on-line in red). The inclusion of the π-mass is helping to see the
kinetic threshold energy of a reaction. The lines connecting the N, Σ and Λ
columns are indicating the reactions we consider in the numerical computa-
tions. All reactions shown in figure 1 can go in both directions, as shown by
the double arrows placed next to the numerical value of the partial decay
width Γi, in MeV.

The evolution, in time, of the resonance yield is described by the process
of resonance formation in scattering, 1+2 → 3, less natural decay 3 → 1+2:

1

V

dN3

dt
=

∑

i

dW i
1+2→3

dV dt
−

∑

j

dW j
3→1+2

dV dt
, (3)

where subscripts i, j denote different reactions channels when available.
We further allow different sets of subscripts i, j in order to allow more
complex dynamical cases in which not all production and/or decay channels
are present.

Allowing for Fermi-blocking and Bose enhancement in the final state,
where by designation particles 1 and 3 are fermions (heavy baryons) and
particle 2 is a boson (often light pion), we have for the two rates:

dW j
3→1+2

dV dt
=

∫

g3d
3p3

2E3(2π)3

∫

d3p1

2E1(2π)3

∫

d3p2

2E2 (2π)3
(2π)4 δ4

p (1 + 2 − 3)

×f3 (1 − f1) (1 + f2)
1

g3

∑

spin

∣

∣

〈

p3

∣

∣M j
∣

∣ p1p2

〉∣

∣

2
, (4)

and in analogy, we have for the 3 back-production rate

dW i
1+2→3

dV dt
=

∫

g1d
3p1

2E1(2π)3

∫

g2d
3p2

2E2(2π)3

∫

d3p3

2E3 (2π)3
(2π)4 δ4

p (1 + 2 − 3)

×f1f2 (1 − f3)
1

g1g2

∑

spin

∣

∣〈p1p2

∣

∣M i
∣

∣ p3〉
∣

∣

2
, (5)

where δ4
p(1 + 2 − 3) ≡ δ4(p1 + p2 − p3) assures 4-momentum conservation

and gi, i = 1, 2, 3 is particle degeneracy. The Bose function for particle 2,
and Fermi distribution for particles 1, 3 are:

f2 =
1

Υ−1
2 eu·p2/T − 1

, fj =
1

Υ−1
j eu·pj/T + 1

, j = 1, 3 . (6)
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Here, Υi is particles fugacity, and u ·pi = Ei, for uµ = (1,~0) in the rest frame
of the heat bath where d4pδ0(p

2
i − m2

i ) → d3pi/Ei for each particle. Hence,
Eq. (4) and Eq. (5) are Lorentz invariant, and thus as presented these rates
can be evaluated in any convenient frame of reference. Normally, this is the
frame co-moving with the thermal volume element.

Since particles 2, 3 are here heavy baryon (resonances), we can work using
the expansion of the relativistic distribution, the first term is the Boltzmann
limit:

Ni

V
= Υi

T 3

2π2
gix

2
i K2(xi) , (7)

where xi = mi/T , K2(x) is Bessel function (not to be mixed up with parti-
cle 2). However, we use the complete Bose distribution to describe pions.

We introduce in medium lifespan of particle 3:

1

τ3
≡

∑

i R
i
123

V −1dN3/dΥ3
, (8)

and, similarly, channel lifespan τ i
3, omitting the sum

∑

i. The rate R123 is:

Ri
123 =

∫∫∫

d3p1d
3p2d

3p3

8E1E2E3(2π)5
f1f2f3 eu·p3/T

Υ1Υ2Υ3
δ4
p (1+ 2 − 3)

∑

spin

∣

∣

〈

12
∣

∣M i
∣

∣ 3
〉∣

∣

2
.(9)

R is independent of the fugacity, in the Boltzmann-limit.
The production and decay rates are connected to each other by the de-

tailed balance relation [13, 14]:

Υ−1
1 Υ−1

2

dW1+2→3

dV dt
= Υ−1

3

dW3→1+2

dV dt
= R123 . (10)

Using detailed balance Eq. (10), we obtain for fugacity Υ3 the evolution
equation:

dΥ3

dτ
=

∑

i

Υ i
1Υ

i
2

1

τ i
3

+ Υ3





1

τT
+

1

τS
−

∑

j

1

τ j
3



 , (11)

where we have also introduced characteristic time constants of tempera-
ture T and entropy S evolution

1

τT
= −d ln(x3

2K2(x3))

dT
Ṫ ,

1

τS
= −d ln(V T 3)

dT
Ṫ . (12)

The entropy term is negligible, τS ≫ τ3, τT since we implement near con-
servation of entropy during the expansion phase. We implement this in way
which would be exact for massless particles taking V T 3 = const. Thus, there
is some entropy growth in HG evolution we consider, but it is not signifi-
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cant. In order to evaluate the magnitude of τT , we use the relation between
Bessel functions of order 1 and 2 (not to be mixed up with particles 1, 2)
d

(

z2K2(z)
)

/dz = −z2K1(z). We obtain

1

τT
= −K1(x3)

K2(x3)
x3

Ṫ

T
, (13)

τT > 0. For a static system with τT → 0, we see that Eq. (11) has transient
stable population points whenever

∑

i

Υ i
1Υ

i
2/τ

i
3 − Υ3

∑

j

1/τ j
3 = 0 . (14)

Finally, we consider the evolution in time of Υ1 and Υ2. In the equa-
tion for Υ1, we have terms which compensate what is lost/gained in Υ3 see
Eq. (11). Further, we have to allow that particle ‘1’ itself plays the role
of particle ‘3’ (for example, this is clearly the case for Λ(1520)). That is
accomplished introducing a chain of populations relations as follows:

(1′ + 2′ ↔ 1) + 2 ↔ 3 . (15)

In the present setting, Υ2=π = const. By virtue of entropy conservation the
same applies to the case 2′ = π. However, if either particle 2 or 2′ is a kaon,
we need to follow the equation for Υ2,2′=K which is analogous to equation
for particle 1 or 1′.

4. Model details and initial conditions

The evolution equations can be integrated once the time dynamics of the
fireball and the initial conditions are fixed:
(1) We choose a model of expansion which fixes the behavior T (t); here, we
invoke a model of matter expansion where the longitudinal and transverse
expansion is considered to be (nearly) independent:

Ṫ

T
= −1

3

(

2 (vτ/R⊥) + 1

τ

)

, (16)

where R⊥ is the transverse radius, v is the velocity of expansion in trans-
verse dimension. All flow parameters (or temperature dependence on τ) are
the same as in [15, 16].
(2) We determine the initial values of particle densities (fugacities) estab-
lished at hadronization/chemical freeze-out. We determine these for RHIC
head-on Au–Au collisions at

√
sNN = 200 GeV. We introduce the initial
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hadron yields inspired by a picture of a rapid hadronization of QGP in which
quarks combine into final state hadrons. For simplicity, we assume that the
net baryon yield at central rapidity is negligible. Thus, the baryon-chemical
and strangeness potentials vanish. The initial yields of mesons (qq̄), (sq̄) and
baryons (qqq), (qqs) are controlled aside of the ambient temperature T , by
the constituent light quark fugacity γq and the strange quark fugacity γs.
(3) Since high energy pions are moving faster than the bulk of the matter and
leave the domain in which the slower baryons are found, we assume that it is
impossible to excite reactions with high threshold energy. We thus exclude
channels for resonance 3 production with threshold energy ∆E > 300 MeV.
(4) We characterize the hadronization dynamics: we assume that the stran-
geness pair-yield in QGP is maintained in transition to HG. This fixes the
initial value of γs. In fact, since we investigate relative chemical equilib-
rium reactions, our results do not depend significantly on the exact initial
value γs and/or strangeness content. The entropy conservation at hadroniza-
tion fixes γq. For hadronization temperature T (t = 0) ≡ T0 = 180 MeV,
γq = 1. However, when T0 < 180 MeV, γq > 1 in order to have entropy
conserved at chemical freeze-out. At T0 = 140 MeV, γq = 1.6 that is close
to maximum possible value of γq, defined by Bose–Einstein condensation
condition [17].
(5) The initial particle yields are fixed in terms of fugacities:

Υ 0
(1=Y ) = γ2

qγs , Υ 0
(2=π) = γ2

q , (17)

or

Υ 0
(1=N) = γ3

q , Υ 0
(2=K) = γqγs , (18)

where Y ≡ Σ, Λ is a hyperon, the particle 1 is a baryon and particle 2 is
a meson. The particle 3 is always a strange baryon:

Υ 0
(3=Y ) = γ2

qγs . (19)

Note that for γq > 1, we have always initially

Υ1Υ2

Υ3

∣

∣

∣

∣

t=0

= γ2
q ≥ 1 . (20)

As a consequence, initially the pair of particles 1, 2 reacts into 3.
(6) We do not need to follow the evolution in time for the pion yield, which
is fixed by conservation of entropy per unit rapidity, as incorporated in
Eq. (16). Thus, it is (approximately) a constant of motion. This can be
seen recalling that the entropy per pion is nearly 4 within the domain of
temperatures considered. The conservation of entropy implies that pion
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number is conserved, and with V T 3 ≃ const. This further implies that,
during the expansion,

Υπ = γ2
q = const.,

which we keep at the initial value.

5. Σ(1385) and Λ(1520) yield results

In Fig. 2, we present the fractional yields Σ(1385)/Λtot (left), and
Λ(1520)/Λtot (right) as a function of temperature of final kinetic freeze-
out T . The results for the hadronization temperatures T0 = 140 (blue lines
on-line), T0 = 160 (green lines on-line) and T0 = 180 MeV (red lines on-line)
are shown, lines recognized also by their initial value.
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Fig. 2. The ratio Σ(1385)/Λtot, on left, and Λ(1520)/Λtot, on right, as a functions

of temperature T (t) for different initial hadronization temperatures T0 = 140, 160

and 180 MeV (blue, green and red lines, respectively), recognized also by their

initial value along the hadronization curve (dot-dashed).

In Fig. 2, the dash-dotted (green)line is the result when the kinetic freeze-
out temperature T coincides with the hadronization temperature T0. There
is no kinetic resonance evolution phase in this case, only resonances decay
after hadronization. This result is similar to SHARE result (purple, dotted
line). The small difference is mainly due to us taking into account the decays

Σ(1670, 1750) → Λ(1520) + π , (21)
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which are expected/predicted in [18]. Similarly, for Σ(1385) our results for
T0 = T are different from SHARE results because we include the decay

Σ(1670) → Σ(1385) + π , (22)

which is part of recently updated particle data set [19].
For all initial hadronization temperatures, as the freeze-out tempera-

ture decreases, the suppression for Λ(1520)ob/Λtot ratio is larger than for
Λ(1520)/Λ(1520)0 (at the same temperature T of final kinetic freeze-out).
The effect is due in part to the asymmetry to excite Σ(1775) and heavier Σ∗

directly due to its high mass. The resonance yield suppression effect is ap-
proximately of the same magnitude for all hadronization temperatures T0.
However, the initial hadronization yield of Λ(1520) is sensitive to temper-
ature, and decreases rapidly with T . Therefore, only for T0 = 140 MeV,
a kinetic freeze-out temperatures ≈ 95–105 MeV the ratio Λob(1520)/Λtot

reaches the experimental domain Λob(1520)/Λtot < 0.042±0.01 [5,6] shown,
in Fig. 2, by dashed lines. For the same initial conditions, that is for T0 =
140 MeV, we find [15, 16] the ratio Σ(1385)/Λtot ≈ 0.45 at T ≈ 100 MeV
(and for the entire range 95–135 MeV, in good agreement with experimental
data [6, 7]).

6. Conclusions

We find that the resonant hadron states, considering their very large de-
cay and reaction rates, can often interact beyond the chemical and thermal
freeze-out of stable particles. Thus, the observed yield of resonances is fixed
by the physical conditions prevailing at a later breakup of the fireball mat-
ter rather than the production of non-resonantly interacting hadrons. This
study quantifies the expectation that, in a dense hadron medium, narrow
resonances are ‘quenched’ [11].

Despite a scenario dependent resonance formation or suppression, the
stable particle yields used in the study of chemical freeze-out remain almost
unchanged, since all resonances ultimately decay into the lowest ‘stable’
hadron. Therefore, after a description, e.g., within a statistical hadroniza-
tion model of the yields of stable hadrons, the understanding of resonance
yields is a second, and separate task which helps to establish the consistency
of our physical understanding of the hadron production process.

Our results show that the observable ratio Λ(1520)ob/Λtot can be sup-
pressed by two effects. First Λ(1520) yield is suppressed due to excitation of
heavy Σ∗s in the resonance scattering process. Moreover, the final Λ(1520)ob
yield is suppressed, because Σ∗s, which decay to Λ(1520), are suppressed at
the end of the kinetic phase evolution by their (asymmetric) decays to lower
mass hadrons.
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We resolve resonance puzzle in that we find that some resonances can be
enhanced and some suppressed. Specifically Σ(1385) is strongly enhanced,
since the dense pion gas especially for γq > 1 pushes the Λ into Σ(1385). On
the other hand, the narrow Λ(1520) is depleted by pions pushing it over to
high mass resonances, which later can decay without repopulating Λ(1520).
This effect is particularly strong if we observe that there are fewer high
energy particles than Boltzmann distribution predicts in a rapidly expanding
and cooling fireball.

J.R. thanks the organizers of WPAC meeting in Krakow for their kind
invitation to make this presentation, and the excellent ambiance. He also
thanks PD Dr. Peter Thirolf and Prof. D. Habs, Director of the Cluster
of Excellence in Laser Physics — Munich-Center for Advanced Photonics
(MAP) for their hospitality in Garching where this research was in part
carried out. This research was supported by the DFG–LMUexcellent grant,
and by a grant from: the U.S. Department of Energy DE-FG02-04ER4131.

REFERENCES

[1] J. Rafelski, R. Hagedorn, From Hadron Gas To Quark Matter. 2, in Statistical
Mechanics of Quarks and Hadrons, H. Satz, ed., Norht Holland, 1980, p. 253,
also: Preprint CERN-TH-2969, October 1980. A scan of this articles is also
available at http://www.physics.arizona.edu/˜rafelski/rare.htm

[2] G. Torrieri, S. Steinke, W. Broniowski, W. Florkowski, J. Letessier, J. Rafelski,
Comput. Phys. Commun. 167, 229 (2005) [arXiv:nucl-th/0404083].

[3] G. Torrieri, S. Jeon, J. Letessier, J. Rafelski, Comput. Phys. Commun. 175,
635 (2006) [arXiv:nucl-th/0603026].

[4] W. Broniowski, W. Florkowski, B. Hiller, Phys. Rev. C68, 034911 (2003)
[arXiv:nucl-th/0306034].

[5] C. Markert [STAR Collaboration], J. Phys. G 28, 1753 (2002)
[arXiv:nucl-ex/0308028].

[6] J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 97, 132301 (2006)
[arXiv:nucl-ex/0604019].

[7] S. Salur, J. Phys. G 32, S469 (2006) [arXiv:nucl-ex/0606002].

[8] C. Markert [STAR Collaboration], J. Phys. G 35, 044029 (2008)
[arXiv:nucl-ex/0712.1838].

[9] R. Witt, J. Phys. G 34, S921 (2007) [arXiv:nucl-ex/0701063].

[10] B.I. Abelev et al. [STAR Collaboration], Phys. Rev. C78, 044906 (2008)
[arXiv:nucl-ex/0801.0450].



1024 I. Kuznetsova et al.

[11] J. Rafelski, J. Letessier, G. Torrieri, Phys. Rev. C64, 054907 (2001)
Phys. Rev. C65, 069902 (2002) [arXiv:nucl-th/0104042]; G. Torrieri,
J. Rafelski, Phys. Lett. B509, 239 (2001) [arXiv:hep-ph/0103149];
G. Torrieri, J. Rafelski, Phys. Rev. C68, 034912 (2003)
[arXiv:nucl-th/0212091].

[12] M. Bleicher, J. Aichelin, Phys. Lett. B530, 81 (2002)
[arXiv:hep-ph/0201123]; M. Bleicher, H. Stoecker, J. Phys. G 30, S111
(2004) [arXiv:hep-ph/0312278]; S. Vogel, M. Bleicher,
arXiv:hep-ph/0607242 in proceedings of 22nd Winter Workshop on Nuclear
Dynamics, La Jolla, CA, 11–19 March, 2006.

[13] I. Kuznetsova, T. Kodama, J. Rafelski, Chemical Equilibration Involving De-
caying Particles at Finite, Temperature, in preparation.

[14] I. Kuznetsova, D. Habs, J. Rafelski, Phys. Rev. D78, 014027 (2008)
[arXiv:hep-ph/0803.1588].

[15] I. Kuznetsova, J. Rafelski, Phys. Lett. B668, 105 (2008)
[arXiv:nucl-th/0804.3352].

[16] I. Kuznetsova, J. Rafelski, Phys. Rev. C79, 014903 (2009)
[arXiv:nucl-th/0811.1409].

[17] I. Kuznetsova, J. Rafelski, Eur. Phys. J. C51, 113 (2007)
[arXiv:nucl-th/0607203].

[18] W. Cameron et al. [Rutherford-London Collaboration], Nucl. Phys. B131, 399
(1977).

[19] C. Amsler et al. [Particle Data Group], Phys. Lett. B667, 1 (2008).


