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1. Introduction

Scalar field-theoretic models play an important role in contemporary the-
oretical physics. They have a wide range of applications from condensed
matter physics [1] to cosmology [2]. An interesting new class of scalar
field models has been proposed in [3]. Such models are called models with
V-shaped potentials due to their common property of a non-vanishing first
derivative of the potential at the minimum. This feature introduces a qual-
itatively new behaviour of fields close to the vacuum. It turns out that for
models with V-shaped potentials the field approaches its vacuum value in
a polynomial (quadratic) way. As a consequence, topological defects (e.g.
kinks) have compact support (so-called compactons), see [4]. A recently
found non-topological object which has the form of an oscillon is also com-
pact, [5]. The other group of compact solutions which seem to be very inter-
esting from a physical point of view are Q-balls, see [6,7]. The possibility of
applyingQ-balls to boson stars and black holes looks especially attractive [8].
Also models with standard (smooth) field potential can support compact ob-
jects if they have non-standard kinetic (e.g. quartic) terms [9–13]. These
models, known also as K-field models, are studied in the context of the
global expansion of the universe (K-essence). In fact, historically, the first
non-topological compact solution was found by Roseanau and Hyman in
a modified KdV system [14].
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The simplest V-shaped scalar field model is the signum-Gordon model
[15,16]. It has been shown that, apart from self-similar solutions, it supports
also so-called shock waves, i.e. a class of solutions with a field discontinuity
that propagates with velocity v = 1. The violation of the scaling symmetry
of the signum-Gordon model has been studied for both self-similar solutions
[17] and shock waves [18]. In the following paper we concentrate on the
case of shock waves. The genesis of this paper comes from the observation
that a specific class of solutions in [18] has not been considered. The new
solutions are quite interesting because they merge properties of shock waves
(discontinuity of the field at one end) and compactons (quadratic approach
to a vacuum value at the other end). Such a solution is compact in an
arbitrary stage of evolution so we call it a shock impulse instead of a shock
wave.

Our paper is organized as follows. In Section 2 we briefly recall the
signum-Klein–Gordon model. Section 3 is devoted to the presentation of
a new class of solutions. In the last section we summarize our paper.

2. The signum-Klein–Gordon model

The Lagrangian of a (1+1) dimensional signum-Klein–Gordon model
reads

L = 1
2(∂tφ)2 − 1

2(∂xφ)2 − V (φ) , (1)

where φ(x, t) is a scalar field with an interaction given by the potential

V (φ) = |φ| − 1
2λφ

2 . (2)

In [18] we have proposed a mechanical system which in the limit of an
infinite number of degrees of freedom is described by the Lagrangian (1).
The quadratic interaction term has been chosen for simplicity. It is one of
the simplest terms that can be used to violate an exact scaling symmetry.
For details see [17] and [18]. The Euler–Lagrange equation reads

φtt − φxx + signφ− λφ = 0 , (3)

where we assume (for physical reasons) that sign(0) = 0. It is clear that
φ = 0 is a solution of (3). This solution is necessary in the construction
of compactons. The Ansatz φ(x, t) = Θ(±z)W (z) gives discontinuous so-
lutions, where “+” refers to solutions outside the light cone, “−” refers to
solutions inside the light cone and z = (x2 − t2)/4. It has been already
discussed in [18] that the velocity v = 1 is distinguished by the model and it
is the unique admissible velocity for the propagation of field discontinuities.
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3. Compact shock impulses

We are interested in the case λ ≡ ρ2 > 0. For solutions outside the light
cone our Ansatz takes the form

φ(x, t) = Θ(z)W (z), where z = 1
4(x2 − t2) . (4)

In the new variable y, related to z by the formula z = 1
4y

2, the equation (3)
takes the form

g′′ +
1
y
g′ + ρ2g = sign(g) , (5)

where g(y) ≡ W (z(y)). It could be helpful to consider equation (5) as an
equation of motion of a fictious particle in the potential U(g) = 1

2ρ
2g2− |g|.

As we mentioned already in [18], equation (5) has partial solutions

gk(y) = (−1)k
(

1
ρ2
− µkJ0(ρy)− νkY0(ρy)

)
, (6)

where gk > 0 for k = 0, 2, 4, . . . and gk < 0 otherwise. J0 and Y0 are
Bessel functions. The partial solution not considered in [18] is a constant
zero solution. Because of sign(0) = 0, g(y) = 0 is a solution of (5). Such
a solution corresponds to the solution φ = 0 in a physical system, so it is
well motivated from a physical point of view.

3.1. Single-zero solution

The solution g0(y) can be parametrized by only one parameter because
at y = 0 the Bessel function Y0 has a singularity, so for physical reasons we
set ν0 = 0. The second coefficient µ0 can be expressed by the value of g0(0),
which results in

g0(y) =
1
ρ2
−
(

1
ρ2
− g0(0)

)
J0(ρy) . (7)

As was explained in a previous paper, depending on the values g0(0), the
solution g0(y) can be positive or can be matched with a negative partial
solution g1(y). The intermediate case allows for matching the solution g0(y)
with the trivial solution g(y) = 0. In this case g0(y) reaches its zero value
quadratically. This happens for

g0(0) =
1
ρ2

(
1− 1

J0(j11)

)
, (8)
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where j11 is the first zero of J1(y). We name this value gcrit
0 . Approximately

ρ2gcrit
0 = 3.482872. In this case the full compact impulse reads

g(y) =

{
1
ρ2

(
1− J0(ρy)

J0(j11)

)
if 0 ≤ y ≤ j11/ρ ,

0 if y > j11/ρ .
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Fig. 1. Evolution of a compact impulse φ(x, t) at moments t = 0, 2, 4, 6 for ρ = 1.

The matching point x0 moves with subluminal velocity ẋ0 = t/
√
c20 + t2,

where c0 = j11/ρ. For t → ∞ it is reached by the discontinuity x = t.
It comes from the fact that the length of the compact shock impulse Lc =√
c20 + t2 − t for t→∞ has a leading term Lc = c20

2
1
t +O

(
1
t3

)
.

3.2. Multi-zero solutions

As was discussed in [18], for g0(0) > gcrit
0 , negative partial solutions are

present. If g0(0) is not too big a full compact impulse g(y) is composed
of two pieces g0(y) and g1(y). Again, for a certain value of g0(0) a partial
solution g1(y) reaches its zero c1 quadratically, therefore it could be matched
with a constant zero partial solution. At the point c0 g1(y) is matched with
g0(y). We have used a special notation ck for those zeros for which the field
reaches its zero value in a quadratic way, whereas all other zeros we label
by ck. A general higher-rank multi-zero solution consists of partial solutions
g0, . . . , gk and g = 0 and has a matching points c0, . . . , ck−1 and ck.

As an example let us study in details a solution for k = 1. There are
three partial solutions g0(y), g1(y) and a constant solution g(y) = 0, and
two matching points c0 and c1. The partial solutions obey the following
matching conditions

g0(c0) = 0 = g1(c0) , g′0(c0) = g′1(c0) , (9)
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g1(c1) = 0 , g′1(c1) = 0 . (10)

The first condition, g0(c0) = 0, and conditions (10) give us

g0(y) =
1
ρ2

[
1− J0(ρy)

J0(ρc0)

]
, (11)

g1(y) = − 1
ρ2

[
1− Y1(ρc1)J0(ρy)− J1(ρc1)Y0(ρy)

Y1(ρc1)J0(ρc1)− J1(ρc1)Y0(ρc1)

]
, (12)

where the parameter g0(0) is expressed in terms of c0. The other condi-
tions in (9) give algebraic equations for c0 and c1. These equations can be
rewritten in the following form

Y1(ρc1)J0(ρc0)− J1(ρc1)Y0(ρc0)
Y1(ρc1)J0(ρc1)− J1(ρc1)Y0(ρc1)

= 1 , (13)

Y0(ρc0)
J0(ρc0)

+
Y1(ρc0)
J1(ρc0)

− 2
Y1(ρc1)
J1(ρc1)

= 0 . (14)

Equations (13) and (14) can be solved numerically. We will not present
formulas for bigger k because they are too complicated.

In Figs 2 and 3 we present two examples of multi-zero solutions g(y) with
three and four segments, respectively. For higher-range solutions, k > 2,
instead of solutions we present only plots of numerical values of g0(0) and
ck as functions of k, see Figs 4 and 5.

The numerical results suggest, surprisingly, that, at least for not too
large k, both the sequence of g2

0(0)(k) and the sequence of zeros ck behave
linearly (arithmetic sequences). Linear fits give us:

• ρ = 0.8

g2
0(0)(k) = 30.89 + 35.28k ,

ck = 4.57 + 5.61k ,

• ρ = 1.0

g2
0(0)(k) = 12.65 + 14.44k ,

ck = 3.67 + 4.49k ,

• ρ = 1.2

g2
0(0)(k) = 6.09 + 6.97k ,

ck = 3.06 + 3.74k .
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Fig. 2. Three segment (k = 1) multi-zero solution g(y) for ρ = 1.
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Fig. 3. Four segment (k = 2) multi-zero solution g(y) for ρ = 1.
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Fig. 4. Values of g2
0(0) for consecutive multi-zero compact solutions g(y). Straight

lines represent linear fits to numerical data. The upper line has been obtained for
ρ = 0.8, the middle line for ρ = 1.0 and the bottom line corresponds to ρ = 1.2.
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Fig. 5. The consecutive zeros ck and their linear fits. The upper line has been
obtained for ρ = 0.8, the middle line for ρ = 1.0 and the bottom line corresponds
to ρ = 1.2.

This means that the size of a compact impulse (as a function of y) or
the size of an initial compacton configuration (as a function of x) changes
linearly with a number k. The size of the compacton for a fixed k shrinks
when ρ increases.

We want to emphasize that linear dependence ck and g0(0) is completely
unexpected. The expressions for solutions for higher k and relations be-
tween coefficients are very complicated and one cannot expect such a simple
relationship.

4. Summary

We have presented a new class of solutions in the (1+1) dimensional
signum-Klein–Gordon model which was not been considered in [18]. The
solutions which appear in models with V-shaped potentials are usually either
shock or compacton type. Our solutions merge both of these properties.
The compact shock impulses, presented above, have on one end a wave front
where a scalar field is discontinuous and on the other end they approach
their vacuum value quadratically.

We would like to thank H. Arodź, C. Adam, J. Sanchez-Guillen and
J.P. Shock for discussion and valuable comments. This paper is supported
by MCyT (Spain) and FEDER (FPA2005-01963), and Xunta de Galicia
(grant PGIDIT06PXIB296182PR and Conselleria de Educacion).
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