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The relation of some small exotic smooth R4 with Abelian gerbes and
H-deformed generalized Hitchin’s structures on S3 ⊂ R4 is discussed. Ex-
otic smoothness of R4 appears as some fundamental phenomenon related to
string theory and which has not been taken into account yet in construction
of any QG theory.
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1. Introduction

Path integral over spacetime geometries, at least formally, has to deal
with different smooth structure of spacetime. Thus, a final version of quan-
tum gravity should include possible effects from the so-called exotic smooth-
ness of background manifolds [13]. The development of mathematical ideas
relating the subject of “exotica” shows that there exist indeed many of unex-
plored, and potentially valid also for physics, effects just in the dimension 4.
Only in this dimension one can find exotic Rn-manifolds non-diffeomorphic
but homeomorphic to R4. Any other Rn, n 6= 4 is uniquely smooth. More-
over, there are at least two families of infinite continuum many different non-
diffeomorphic smooth R4s. First is related with the failure of the smooth
h cobordism theorem in dimension 5 and is called the family of small ex-
otic R4s, and the second appears as the result of some failure the smooth
surgery and contains large exotic R4s. Most open 4-manifolds have infinite
continuum of different smoothings [2,8]. Also compact 4-manifolds can carry
at most infinite countably many non-diffeomorphic smoothings, whereas in
any other dimension n 6= 4 every Mn is smoothable in at most finitely
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many different ways [2]. Again the physical dimension 4 is distinguished.
The “old-standing” problem in mathematics (since 1982) is to give a local
coordinate description of exotic R4 such that a global exotic function is
explicitly given. Such functions could be further applied to produce many
physically valid exactly solvable examples where effects of exotic 4-manifolds
(not only gravitational) are calculated. Even though such an explicit pre-
sentation is missing, two remarkable hypothesis emerged instead. First is
the Brans hypothesis (1994) [5, 6] relating classical general relativity: Cer-
tain exotic smooth 4-structures can be considered as sources for the external
gravitational field in spacetime. This hypothesis was successfully proved for
compact smooth 4-manifolds by Asselmeyer-Maluga in 1996 [1], and for open
4-manifolds by Sładkowski in 1999 [2, 16, 17]. The second, are the hypoth-
esis relating quantum mechanics: Exotic R4s generate algebras which can
naturally represent non-commutative algebras of quantum observables, and
quantum gravity: Exotic smooth R4s are fundamental for the description of
effects of QG in spacetime, similarly as the standard R4 is in the descrip-
tion of classical GR. The QM case was formulated and analyzed both from
the point of view of mathematical model theory [10] and differential geome-
try [4]. The QG formulation of the hypothesis appeared on the base of the
results from model theory and topos theory [12]. However, the general diffi-
culty was the missing of the explicit calculations supporting these quantum
connections. Only recently there appeared the proposal serving as possible
breakthrough in the subject. The connection of small exotic R4s with WZW
models of conformal field theory (CFT) and Verlinde algebras of SU(2) at
the suitable level and with gerbes and foliations was presented [3]. This
shows indeed deep connection of 4-exotica with quantum gravity regime as
in string theory and enables one for computations of the effects. Moreover,
via the techniques developed it is possible to show that the quantization
of electric charge in spacetime is forced by the exoticness of some 4-regions
of it, without referring to magnetic monopoles. In this paper we focus on
the relation of exotic smoothness with generalized Hitchin’s structures on
S3 and the deformation of these by Abelian gerbes. This kind of structures
appeared as fundamental in supersymmetric string theory and flux compact-
ification herein. The geometric approach shows that in the dimension 4 we
have peculiar extension of differential geometry over some quantum regions
of string theory.
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2. String geometry, B-field and gerbes

Einsteinian GR is essentially tied to geometry of some 4-dimensional
pseudo-Riemannian manifolds. The critical point of the action of GR

S(M, g) =
∫
M

Rdvolg (1)

in the absence of any other matter fields, is the pair (M, g) where M is the
pseudo-Riemannian manifold and g a metric on it, R is the scalar curvature
of g.

In the case of string theory, the concept of spacetime as a smooth man-
ifold is not valid any longer in general. Rather we have string backgrounds
which are described by 2-dimensional conformal field theory and σ models in
a suitable targets. However, these string backgrounds still have well-defined
geometric classical limits which appear to be the triples (M, g,B) where in
addition to the pseudo-Riemannian smooth manifold M and metric g we
have B-field, i.e. local 2-form on M . Conversely, every full string back-
ground, hence 2-dimensional CFT plus σ-model with the target M , can be
derived from some limiting classical geometry (M, g,B) [14]. Hence the dif-
ference between geometries of classical and quantum gravity is based on the
existence of B field in the case of superstring theory.

From the other side, B-field on a manifold M is the same as an Abelian
gerbe with the connection [14]. Abelian gerbes are classified by the inte-
gral classes of H3(M,Z). These are geometric objects representing the third
cohomologies similarly as complex line bundles represent the second coho-
mologies from H2(M,Z).

The important feature of 3-rd cohomology classes on manifolds is the
deformation of generalized Hitchin’s structures by these classes. In a special
case of integral 3-rd cohomologies one has the twisted by gerbes generalized
Dirac structures, or Courant brackets on manifolds. The relation of these
with exotic R4s is the topic of the following section.

3. Exotic R4 and B-fields on S3

The deep relation between the real 3-rd deRham cohomology classes of
the 3-sphere embedded in R4 and small exotic R4s, was established in [3]:
the classes from H3(S3,R) correspond uniquely to different smoothings of
R4 when S3 is the boundary of the so-called Akbulut cork. The Akbulut
cork is some compact contractible 4-submanifold with a boundary of R4.
The boundary is the cohomology 3-sphere and the Akbulut cork determines
uniquely (up to the isotopy) the exotic smooth structure on R4.
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The generalized Hitchin’s structure on S3 arises when one replaces the
tangent space TS3 of S3 by the sum TS3 ⊕ T ?S3 of the tangent and cotan-
gent bundles, the spin structure for such generalized “tangent” bundle now
becomes the bundle of all forms

∧• S3 on S3. Then one defines the Courant
bracket on the smooth sections of TS3 ⊕ T ?S3

[X + ξ, Y + η] = [X,Y ] + LXη − LY ξ − 1
2d(iXη − iY ξ) , (2)

where X + ξ, Y + η ∈ C∞(TS3 ⊕ T ?S3), LX is the Lie derivative in the
direction of the field X, iXη is the inner product of a 1-form η and a vector
field X. On the r.h.s. of (2) [ , ] is the Lie bracket on fields. The Courant
bracket is skew symmetric and vanishes on 1-forms. However, the Courant
bracket is not a Lie bracket, since the first does not fulfill the Jacobi identity.
The expression measuring the failure of the identity is the Jacobiator:

Jac(X,Y, Z) = [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] . (3)

One can define the inner product on TS3 ⊕ T ?S3 as

〈X + ξ, Y + η〉 = 1
2(ξ(Y ) + η(X)) . (4)

This product is symmetric and has the signature (n, n), where n = dim(M).
In our case of S3 the non-compact ortogonal group reads O(TS3⊕ T ?S3) =
O(3, 3). A subbundle L < TM ⊕ T ?M is involutive if it is closed under
the Courant bracket defined on its smooth sections, and is isotropic when
〈X,Y 〉 = 0 for X, Y smooth sections of L. In the case that dim(L) = n,
hence is maximal, we call such an isotropic subbundle a maximal isotropic
subbundle. The following property characterizes these subbundles [9]:

Given L a maximal isotropic subbundle of TM ⊕ T ?M , then L is invo-
lutive if JacL = 0.

A Dirac structure on TM ⊕ T ?M is a maximal isotropic and involutive
subbundle L < TM ⊕ T ?M .

The importance of using the Dirac structures is much generality of these
in contrast to Poisson geometry, complex structures, foliated or symplectic
geometries. Dirac structures unify all these cases and give rise to new ones.
We are especially interested in the H-deformed Dirac structures where H is
the 3-form on S3. The H-deformed Dirac structures include also generalized
complex structures which are well defined on some manifolds without any
complex or symplectic structures at all. Moreover, this kind of geometry
became extremely important in string theory (flux compactification, mirror
symmetry, branes in YM manifolds) and related WZW models. These ap-
pear also as the important tool for the correct recognition of exotic smooth
R4s [3].
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The suitable modification of Lie product of fields on smooth S3 is re-
quired. The modification is given firstly by the Courant bracket on TS3 ⊕
T ?S3 and then by the H-deformation of it.

In differential geometry, Lie bracket of smooth vector fields on a smooth
manifoldM is invariant under diffeomorphisms, and there are no other sym-
metries of the tangent bundle preserving the Lie bracket.

In the case of the extended “tangent space”, which is TM ⊕ T ?M , the
Courant bracket and the inner product are diffeomorphisms invariant. How-
ever, there exists another symmetry extending the diffeomorphisms: this is
the B-field transformation. Given a two-form B on M one can think of it as
the map TM → T ?M by contracting B with X, X → iXB. The transfor-
mation of TM ⊕T ?M given by eB : X + ξ → X + ξ+ iXB has the property
that

the eB extension of diffeomorphisms are the only allowed symmetries of
the Courant bracket.

Or more precisely
the group of orthogonal Courant automorphisms of TS3 ⊕ T ?S3 is the

semidirect product of Diff(S3) and Ω2
closed [9].

We see that B-field extends the diffeomorphisms of TS3 which is under-
stood as the preparation for grasping the exotic diffeomorphisms of R4. For
this we need rather deformed Courant bracket.

Given a Courant bracket on TM ⊕ T ?M we are able to deform it by
a real closed 3-form H from H3(M,R). For any real 3-form H one has the
twisted Courant bracket on TM ⊕ T ?M defined as

[X + ξ, Y + η]H = [X + ξ, Y + η] + iY iXH , (5)

where [ , ] on the RHS is the non-twisted Courant bracket. This can be
also restated as the splitting condition in non-trivial twisted Courant alge-
broid [9].

This deformed bracket allows for defining various involutive and (maxi-
mal) isotropic structures with respect to [ , ]H . These structures correspond
to new H-twisted geometries which are different to the case of Dirac struc-
tures for the untwisted Courant bracket. Thus B-fields on S3 deform Dirac
structures on the 3-sphere. This generalized geometry on S3 is better suited
for the description of the differences between various smoothings of R4. We
state here a general correspondence [3] leaving more explicit geometric anal-
ysis for a separate work:

Continuum of many distinct small exotic smooth structures on R4 cor-
respond 1÷ 1 to the H-deformed classes of generalized Hitchin’s geometries
on S3, where [H] ∈ H3(S3,R) and S3 is the boundary of the Akbulut cork.
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One would like to construct some exotic R4 from the specific generalized
Hitchin’s geometry taken from the class of H-deformed and integrable Dirac
structures. This has not, however, been performed yet.

In the special case of integral 3-rd cohomologies of S3 we get whole spec-
trum of possible geometrical interpretations. Namely, Abelian gerbes on S3

as being classified by classes from H3(S3,Z) should correspond somehow to
smoothings of R4. In fact it holds:

Different (small) exotic smooth R4s correspond to different classes of
Abelian gerbes on S3 ⊂ R4.

Next, one could take a generalized Hitchin’s structure on S3 which would
be deformed by the Abelian gerbes, and the result follows:

The deformed Hitchin’s structures on S3 by the S1-gerbes on S3 corre-
spond to different exotic smooth (small) R4.

Or
the changes of certain smoothings of R4 correspond to the deformations

by S1-gerbes of the generalized Hitchin’s structure on S3, the boundary of
the Akbulut cork.

Next, let us consider S3 as the group SU(2). Defining WZW model
on this SU(2) and observing that different gerbes on S3 correspond to the
integral levels k ∈ Z, one has:

Different integral levels k of the WZW model on SU(2) correspond to
different smoothings of R4.

One can also obtain the relation of 4-exotics with the levels of the Ver-
linde algebra of SU(2). This can be obtained by considering gerbes on orb-
ifolds, in particular Abelian gerbes on SU(2) × SU(2) ⇒ SU(2) groupoid,
where SU(2) acts on itself by conjugation [7].

The changes between some small exotic R4s can be correlated with the
suitable changes of the level k of the Verlinde algebra of SU(2), Vk(SU(2)).

One can also show the peculiar relation of 4-exotica with non-commu-
tative C∗-algebras and that the exotic smoothing of R4 twists the K-theory
on S3 toward the K-theory of some non-commutative Banach algebra (see
also [15] and [14]).

R4 is the simplest 4-dimensional manifold which models spacetime lo-
cally. The broad spectrum of the relations of non-standard smooth struc-
tures on R4 with mathematical constructions of string theory and QFT
indicates that fundamental physics, where QG becomes important, should
be focused rather on exotic than standard smoothness of R4. This more
than a satisfactory theory of QG in dimension 4 is still missing.

The results presented here were established in the cooperation with
Torsten Asselmeyer-Maluga. I would like to thank the organizers of the
Conference for giving me the opportunity to present this work.
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