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ON THE QUANTIZATION OF DAMPED
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We derive results for two constants of the motion of a one-dimensional
damped harmonic oscillator with position-dependent frictional coefficient
and use them to obtain two alternative Lagrangian representations, which
are not connected by a gauge term. The Hamiltonians corresponding to
these Lagrangians lead to canonically inequivalent phase-space descriptions.
We could, however, make use of a perturbation theoretic approach to quan-
tize the classical motion using both Hamiltonians and thus demonstrate
that the corresponding quantum systems are entirely different.
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1. Introduction

Studies in the quantization of dissipative systems play a role in several ar-
eas of physics ranging from electrodynamics to chromodynamics. In spite of
this, the problem of quantizing the simplest dissipative system, namely, the
damped harmonic oscillator (DHO), has yet remained largely unsolved [1].
The primary reason for this may be attributed to an early observation made
by Lanczos [2] who noted that the forces of frictions are outside the realm
of variational principle although Newtonian mechanics has no difficulty to
accommodate them. In the recent past, Riewe [3] formulated the Lagrangian
and Hamiltonian mechanics of dissipative systems within the framework of
fractional calculus. It may be an interesting curiosity to adapt the formal-
ism of Riewe to deal with the problem of quantizing the DHO. However, we
are interested to treat a simple variant of the DHO using usual traditional
machineries of classical and quantum mechanics.

The usual equation of motion for the one dimensional DHO is given by

mẍ+ αẋ+ kx = 0 , (1)
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where m is the mass of the oscillator, α the coefficient of friction of the
medium in which the oscillator moves. Clearly, k is the spring constant.
Equation (1) is non self-adjoint. It can easily be made self-adjoint and see
that (1) follows from the action principle

δ

t2
∫

t1

Ldt = 0 , (2)

with the Lagrangian

L =
1

2
e

α
m

t

(

ẋ2 − k

m
x2

)

. (3)

Equation (3) gives the so-called Caldirola–Kanai Lagrangian [4]. From (3)
the canonical momentum

px = e
α
m

t ẋ . (4)

Equation (4) exhibits that the canonical momentum is different from ki-
netic momentum, also the former is explicitly time dependent. These two
points do not permit one to unambiguously quantize the DHO of (1) by
canonical procedure. Since the Lagrangian is explicitly time dependent one
also cannot quantize the system by the path integral method. Although it
appears that there is no direct route to quantize the motion of the DHO,
one may consider the one dimensional DHO in the presence of its time-
reversed image and write an explicitly time-independent Lagrangian for the
system of equations often designated as the Bateman dual system [5]. The
presence of the mirror-image equation implies that energy drained from the
DHO is absorbed by the image oscillator. Thus here one tries to handle
the dissipative systems as if they were conserved. Since the Lagrangian or
equivalently Hamiltonian of the Bateman dual system is explicitly time inde-
pendent, it could be quantized by the usual canonical procedure [6]. Blasone
and Jizba [7], however, studied the quantization of the damped-antidamped
harmonic oscillator system by the use of Feynman–Hibbs kernel formula.

In the above context we introduce a model for the DHO with position
dependent dissipative coefficient and quantize the system by the canonical
procedure. The equation of our interest is given by

mẍ− αkxẋ+ kx = 0 , α < 0 . (5)

In Sec. 2 we show that (5) follows from two alternative Lagrangians both of
which are explicitly time independent. Therefore, one can use the Hamil-
tonian corresponding to any of the Lagrangians to quantize the system.
The alternative Lagrangians are not connected by gauge terms. Despite
that, they are harmless at the classical level in the sense that alternative
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Lagrangians via the action principle give the same equation of motion [8].
Morandi et al. [9] have established that alternative Lagrangian descriptions
of a given physical system lead to entirely different quantum mechanical
systems. Keeping this in view we exhibit in Sec. 3 the quantum dynam-
ical systems corresponding to the alternative Lagrangians representing (5)
and calculate their eigen-energies using a perturbation theoretic approach.
In Sec. 4 we make some concluding remarks.

2. Alternative Lagrangians and Hamiltonians

The differential equation in (5) represents an autonomous mechanical
system in one spatial dimension. We know from Darboux [10] that the
Lagrangian for a one-dimensional autonomous system always exists. We
shall construct here two alternative Lagrangian representations of (5) and
thus obtain the corresponding Hamiltonians. Our construction procedure
will be based on a simple variant of the inverse variational method [11] in
which the Lagrangian is constructed using a first integral of the dynamical
equation. We shall make use of the method of characteristics for solving the
first-order partial differential equations to derive two different expressions
for the constant of the motion or first integral of the dynamical equation.
This will allow us to arrive at alternative Lagrangian descriptions of (5).
Equation (5) can be written in the autonomous form

v
dv

dx
= −kx

m
(1 − αv) , (6)

with v = dx/dt, the instantaneous velocity of the oscillating mass. A con-
stant of the motion for this system is a function K = K(x, v) such that
dK/dt = 0. The function K(x, v) satisfies the first-order partial differential
equation

v
∂K

∂x
− kx

m
(1 − αv)

∂K

∂v
= 0 . (7)

The general solution for this equation is given by [12]

K(x, v) = G(C) , (8)

where G is an arbitrary function of the characteristic curve C of (7). The
characteristic curve can be obtained as

C = −m

α2
[ln(1 − αv) + αv] +

1

2
kx2 . (9)

The function G can be chosen such that in the limit of no dissipation one
can get the usual energy expression E = limα→0K = 1

2mv
2 + 1

2kx
2 for the
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undamped harmonic oscillator. One way of doing this is to select G as the
identity function so that G(C) = C. Thus the first constant of the motion
for (5) is given by

K(1)(x, v) = C . (10)

The Lagrangian L(x, v) of an autonomous system is related to the constant
of the motion K(x, v) according to [11]

L(x, v) = v

v
∫

K(x, ξ)

ξ2
dξ . (11)

From (10) and (11) we get

L(1)(x, v) =
m

α2
ln(1 − αv) +

mv

α
[1 − ln(1 − αv)] − 1

2
kx2 (12)

as the Lagrangian for our first choice regarding the function G. Rather than
taking G as an identity function we could also take

G(C) = −m

α2
e−

α2

m
C +

m

α2
. (13)

The choice in (13) gives a second constant of the motion

K(2)(x, v) =
m

α
veαve−

k
2m

α2x2

+
m

α2

(

1 − eαve−
k

2m
α2x2

)

(14)

for which we can write a second Lagrangian

L(2)(x, v) =
m

α2
eαve−

k
2m

α2x2 − m

α2
. (15)

Clearly the Lagrangians L(1)(x, v) and L(2)(x, v) are gauge inequivalent. It
is easy to check that both of them give the Lagrangian for the undamped
harmonic oscillator in the limit α→ 0. The Hamiltonians corresponding to
L(1)(x, v) and L(2)(x, v) are given by

H(1) =
p1

α
− m

α2

(

1 − e−
αp1

m

)

+
1

2
kx2 (16)

and
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1

α
p2 ln

(

1 +
α

m
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)

+
αk
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p2x

2

− 1

α

(
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m

α

)

+
m

α2
+
m

α2
ln

(

1 +
α

m
p2

)

+
1

2
kx2 , (17)
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with the canonical momenta

p1 =
m

α
ln

(

1

1 − αv

)

(18)

and

p2 =
m

α
eαve−

k
2m

α2x2 − m

α
. (19)

One can verify that both H(1) and H(2) via the Hamilton’s canonical equa-
tions provide us with the same equation of motion as given in (5). These
Newton-equivalent Hamiltonians, however, lead to canonically inequivalent
phase-space descriptions [13, 14]. The Hamilton’s equations ẋ = {x, H1}
and ṗ1 = {p1, H1} correspond to the equation of motion (5) endowed with
the Poisson structure

{x, p1}x,p1
= 1 , {v, p1}x,p1

= 0 , and {x, v}x,p1
=

1

m
e−

αp1

m . (20)

From (18) and (19) we can write

p1(x, p2) =
m

α
ln

(

1 − k

2m
α2x2 − ln

(

1 +
αp2

m

)

)−1

, (21)

v(x, p2) =
1

α
ln

(

1 +
αp2

m

)

+
k

2m
α2x2 . (22)

Equations (21) and (22) enable us to find the noncanonical Poisson brackets

{x, p1(x, p2)}x,p2
=

(

1 − α2

m
H2

)−1

, (23a)

{x, v(x, p2)}x,p2
=

1

m

(

1 +
αp2

m

)−1
, (23b)

and

{v(x, p2), p1(x, p2)}x,p2
= 0 . (23c)

Thus, with Horzela [15], we have constructed two alternative/inequivalent
Hamiltonian descriptions of the same Newtonian system, namely, (x, p1, H1)
or (x, p2, H2). The associated Lagrangians are not connected by a gauge
term and the Hamiltonians are not related by a canonical transformation.
Quantization of systems characterized by inequivalent Hamiltonians is an
interesting curiosity.
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3. Quantum energy levels using H
(1) and H

(2)

Both H(1) and H(2) are explicitly time independent. One, therefore,
may attempt to quantize these Hamiltonian descriptions by means of the
canonical procedure. But alternative Hamiltonians call for the use of a more
general quantization scheme than the canonical one [14, 15]. About sixty
years ago Wigner[16] provided us with such a general scheme which assumes
that Heisenberg’s equations of motion have a “more immediate physical sig-
nificance” than the Heisenberg–Born–Jordan commutation relation. The
validity of Heisenberg’s equations of motion allows for rules of quantization
(Wigner quantization) more general than the canonical one. In this con-
text we display in Fig. 1 the phase diagrams of the Hamilton’s equation
ẋ = ∂H1

∂p1
, ṗ1 = −∂H1

∂x
and ẋ = ∂H2

∂p2
, ṗ2 = −∂H2

∂x
along with the phase dia-

gram of the undamped (α = 0) harmonic oscillator. We have chosen to work
with k/m = 1. The dotted curve (α = −0.4) represents the phase trajectory
(x(t), p1(t)) while the dashed one is a similar trajectory for (x(t), p2(t)).
The solid curve denotes the phase trajectory of the harmonic oscillator. The

HxHtL, p HtL L

... ... ... HxHtL, p1 HtL L

----- HxHtL, p2 HtL L
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Fig. 1. Phase-space of the damped (H(1), H(2)) and undamped (H) harmonic os-

cillators. The dotted- and dashed curves show the trajectories (x(t), p1(t)) and

(x(t), p2(t)) while the solid curve (x(t), p(t)) represents the harmonic oscillator’s

phase diagram.

dotted and dashed curves do not deviate appreciably from the phase dia-
gram of the harmonic oscillator which can be quantized by the canonical
procedure. We have verified that this is true for any physically acceptably
value of α. In view of this we can expand both H(1) and H(2) in powers of
α such that

H(1) =
p2

2m
+

1

2
kx2 − α

6m
p3 +

α2

24m3
p4 , (24a)
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and

H(2) =
p2

2m
+

1

2
kx2 +

α

2m
kpx2 − α

6m2
p3 +

α2

3m3
p4 . (24b)

In writing (24) we have neglected all terms involving powers of α higher
than 2. Here

p = lim
α→0

pi = mv , i = 1, 2 . (25)

The Hamiltonians in (24) can be written in the form

H(i) = H0 +H(i)′ , i = 1 , 2 (26)

with H0 = p2

2m
+ k2

2 x
2, the harmonic oscillator Hamiltonian and H(i)′, a small

perturbation. This decomposition allows us to calculate energy eigenvalues
using non degenerate perturbation theory within the framework of canonical
quantization procedure. To achieve this we write the Schrödinger equation

i~
∂ψ

∂t
= Ĥ(i)ψ , i = 1 and 2 , (27)

where Ĥ(i) is the Hamiltonian operator corresponding to H(i). The time-
dependent wave function ψ(x, t) can be written as a product, ψ(x, t) =
φ(x)f(t), so as to introduce the time independent Schrödinger equation

Ĥ(i)φn(x) = E(i)
n φn(x) (28)

with E
(i)
n , the n-th eigenvalue of the Schrödinger operator Ĥ(i). The calcu-

lation of E
(i)
n will enable us to demonstrate whether the quantum systems

associated with the alternative Hamiltonian descriptions are same or differ-
ent.

The operator corresponding to H0 is

Ĥ0 = ~ω

(

a†a+
1

2

)

, ω =

√

k

m
, (29)

where the creation and annihilation operators a† and a are defined by

a† =

√

mω

2~
x̂− i√

2m~ω
p̂ , (30a)

and

a =

√

mω

2~
x̂+

i√
2m~ω

p̂ . (30b)
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These operators satisfy relations

[a†, a] = 1 , a†|n〉 =
√
n+ 1|n+ 1〉 ,

a|n〉 =
√
n|n− 1〉 , a|0〉 = 0 . (31)

The n-th eigenvalue of Ĥ0 is given by

E(0)
n = ~ω

(

n+
1

2

)

. (32)

The operator corresponding to H(1)′ can be obtained simply by replacing p

and x with p̂ and x̂ while the first term in H(2)′ needs an operator ordering
(px2 → 1

3(p̂x̂x̂+ x̂p̂x̂+ x̂x̂p̂)) for use in quantum mechanics. However, it is

evident that the first-order terms in α of H(i)′ involve only the odd powers
of a and a† and as such these terms do not contribute anything to the
energy eigenvalues. Thus we need to calculate the energy correction using
the second-order perturbation theory according to which

E(2)
n =

∑

m

|〈m|H(i)′|n〉|2

E
(0)
n − E

(0)
m

, n 6= m . (33)

From (24), (26) and (33) we get

E(2)
n |(1) = − α2

96m
~

2ω2
(

68n3 + 102n2 + 118n + 42
)

, (34a)

E(2)
n |(2) = 8E(2)

n |(1) . (34b)

Here E
(2)
n |(1) gives the energy correction to the oscillator level described

by H(1) and E
(2)
n |(2), that to the oscillator represented by H(2). In both

cases the perturbation causes lowering of the harmonic oscillator energy
level. In the second system lowering is eight times as that of the first. The
two quantum systems corresponding to the classical system in (5) are thus
entirely different.

4. Conclusion

The Lagrangian for the one dimensional DHO in (1) does never follow
from an explicitly time-independent Lagrangian. This provides an awkward
analytical constraint for quantizing the motion. We have found that a one
dimensional DHO with the position-dependent frictional coefficient as given
by (5) admits alternative analytic representations [8] characterized by two
explicitly time-independent Lagrangians.



On the Quantization of Damped Harmonic Oscillator 57

From the viewpoint of time inversion t → −t, Newtonian equations
can be classified into symmetry preserving and symmetry violating. For
symmetry violating systems the Lagrangian will be explicitly time depen-
dent. On the other hand symmetry preserving systems can be represented
by time-independent Lagrangians. For example, symmetry violating equa-
tion ẍ+ γẋ = 0 demands for its consistent description a specified direction
of time or ‘time’s arrow’ with the Lagrangian given by L = 1

2 ẋ
2eγt, while

the symmetry preserving equation ẍ + γẋ2 = 0 can be analytically repre-
sented by L = 1

2 ẋ
2e2γx. Equation (5) is time reversal symmetry violating.

Despite that we could find time-independent Lagrangians for it. The reason
for this is not immediately clear. However, we note that our equation is in-
variant under the joint operations — space reflection and time reversal. The
Hamiltonians corresponding to the alternative Lagrangians obtained by us,
although give the same classical equation of motion, have different phase-
space structure. As a result their quantization leads to completely different
quantum systems.
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