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Recently the vector inflation has been proposed as the alternative to
inflationary models based on scalar bosons and quintessence scalar fields.
In the vector inflationary model, the vector field non-minimally couples
to gravity. We should, however, inquire if there exists a relevant funda-
mental theory which supports the inflationary scenario. We investigate the
possibility that Weyl’s gauge gravity theory could be such a fundamen-
tal theory. That is the reason why the Weyl’s gauge invariant vector and
scalar fields are naturally introduced. After rescaling the Weyl’s gauge in-
variant Lagrangian to the Einstein frame, we find that in four dimensions
the Lagrangian is equivalent to Einstein–Proca theory and does not have
the vector field non-minimally coupled to gravity, but has the scalar boson
with a polynomial potential which leads to the spontaneously symmetry
breakdown.

PACS numbers: 04.50.Kd

1. Introduction

Inflationary models are proposed as some resolutions for the cosmological
problems, e.g., the flatness, horizon and monopole problems. These success-
ful models, for example, chaotic inflation [1], k-inflation [2], are based on
models of scalar bosons. The chaotic inflationary model has at least a dif-
ficulty in which bosonic fields could condensate some domains, i.e., in the
early stage, some domains successfully exit but others keep expanding. In
k-inflation and the modified modes [3], these inflations are driven by non-
minimal and non-canonical kinetic terms, but need some adjustments of
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conditions of scalar fields and its potentials. In addition, we have detected
no such scalar bosons by experiments. From these reasons, recently the vec-
tor inflation has been proposed by Ford [4] and some authors have studied
the model [5–7]. They consider the following action:

S =
∫
d4x
√
−g
{
R

16π
− 1

4
F 2 − 1

2

(
m2 +

R

6

)
A2

}
, (1)

where R is the scalar curvature, F denotes the field strength of vector field A
and m is the mass of the vector field. It is worth noting that the massive
vector field non-minimally couples to gravity in Eq. (1). The isotropy and
the stability of the inflationary model have been discussed [6]. The isotropy
of expansion is achieved byN randomly organized vector fields or by a triplet
of orthogonal vector fields. However, these discussions have been made to
solve the cosmological problems from a aspect of cosmological observations.
These models are assumed the bosonic inflatons with potentials that are not
completely supported by fundamental physics. It is, therefore, necessary to
investigate how the fundamental physical theories support the k-inflationary
models.

In the very early stage of our Universe, the gravitational theory is ex-
pected to be different from the ordinary Einstein gravity [8], e.g., higher
derivative gravity, scalar–tensor gravity. Indeed, quantum gravity or string
corrections would affect the cosmological evolution near the Planck scale. In
particular, gravitational theory could be speculated to be a scale invariant
in this stage as well as other fundamental physics.

In this paper, we study the possibility that the Weyl’s gauge gravity is
such a fundamental theory. Weyl’s gauge theory of gravity is an extension
of the Einstein gravity [9–24]. Especially the vector and scalar bosons are
naturally introduced in this theory by the scale invariant symmetry. We
consider that Weyl’s gauge invariant scalar and vector field are expected to
play cosmological important role in the very early stage of our Universe.
In Sec. 2, Weyl’s gauge transformation is introduced as the local scale
transformation. Then we construct the minimal Weyl’s gauge invariant
Lagrangian in arbitrary dimensions in Sec. 3. In Sec. 4, we discuss the
cosmology by using the Lagrangian obtained in Sec. 3.

2. Weyl’s gauge gravity theory

In this section, we review the Weyl’s gauge transformation to construct
the gauge invariant Lagrangian.

Consider the scale transformation in D-dimensions

ds→ ds′ = eΛ(x)ds , (2)
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where Λ(x) is an arbitrary function of the coordinates xµ (µ = 0, . . . , D−1).
Then the transformation of metric is realized by

gµν → g′µν = e2Λ(x)gµν . (3)

Thus
gµν → g′µν = e−2Λ(x)gµν , (4)

and √
−g →

√
−g′ = eDΛ(x)√−g . (5)

We can define the field with weight d = −(D − 2)/2 which transforms as

Φ→ Φ′ = e−
D−2

2
Λ(x)Φ . (6)

We consider the covariant derivative of the scalar field

∂µΦ⇒ ∂̃µΦ ≡ ∂µΦ−
D − 2

2
AµΦ , (7)

where Aµ is a Weyl’s gauge invariant vector meson and its field strength is
given by

Fµν ≡ ∂µAν − ∂νAµ . (8)

Under the Weyl’s gauge field transformation

Aµ → A′µ = Aµ − ∂µΛ(x) , (9)

we obtain the transformation of the covariant derivative of the scalar field
as

∂̃µΦ→ e−
D−2

2
Λ(x)∂̃µΦ . (10)

Moreover, it is easily seen that

Fµν → F ′µν = Fµν . (11)

The modified Christoffel symbol is defined as

Γ̃ λµν ≡ 1
2 g

λσ
(
∂̃µgσν + ∂̃νgµσ − ∂̃σgµν

)
, (12)

and the modified curvature is given as follows:

R̃µνρσ ≡ ∂ρΓ̃µνσ − ∂σΓ̃µνρ + Γ̃µλρΓ̃
λ
νσ − Γ̃

µ
λσΓ̃

λ
νρ . (13)

In Weyl’s gauge theory of gravity, the Lagrangian should be invariant under
the scale transformation.
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3. Weyl invariant Lagrangian

First, we show the Weyl’s gauge invariant sectors of the vector field, the
scalar field, the curvature R and R2 in D-dimensions:

LA = − 1
4e2
√
−g Φ

2(D−4)
D−2 gµρgνσFµνFρσ , (14)

LΦ = −
√
−g
[
1
2
gµν ∂̃µΦ∂̃νΦ+

1
4
λΦ

2D
D−2

]
, (15)

LR =
1
2
√
−g εΦ2R̃ , (16)

LR2 =
√
−g αΦ

2(D−4)
D−2 R̃2 , (17)

where λ, ε, e and α are dimensionless constants and

R̃ = R− 2(D − 1)∇µAµ − (D − 1)(D − 2)AµAµ . (18)

As seen from (18), LR2 seems to include the term of RAµAµ.
The simple Lagrangian which consists of Aµ, Φ, R̃ and R̃2 is the com-

bination of the above sectors. Kao investigated the cosmology of Weyl’s
gauge gravity in four dimensions [17]. He focused on the higher derivative
R2 and introduced effective scalar potentials. Thus we take the more general
higher derivative of R into account, then in general we consider the following
Lagrangian including higher order of the curvature R̃n:

L√
−g

= − 1
4e2

Φ
2(D−4)

D−2 gµρgνσFµνFρσ −
1
2
gµν ∂̃µΦ∂̃νΦ−

1
4
λΦ

2D
D−2

+
1
2
ε Φ

2D
D−2

(
Φ

−4
D−2 R̃

)
+ αΦ

2D
D−2

(
Φ

−4
D−2 R̃

)n
. (19)

Introducing an auxiliary field χ, we get the equivalent Lagrangian as

L√
−g

= − 1
4 e2

Φ
2(D−4)

D−2 gµρgνσFµνFρσ −
1
2
gµν ∂̃µΦ∂̃νΦ−

1
4
λΦ

2D
D−2

+
1
2
ε Φ

2D
D−2χ+ αΦ

2D
D−2χn

+
(

1
2
ε Φ

2D
D−2 + nαΦ

2D
D−2χn−1

)(
Φ

−4
D−2 R̃− χ

)
. (20)

Furthermore, the Lagrangian (20) can be rewritten by the new metric con-
formally related to the original one and new variables. Here we choose

ĝµν ≡ e2Λ(x)gµν , (21)
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and
Âµ ≡ Aµ − ∂µΛ(x) , (22)

where

e−Λ(x) = f

(
Φ2 +

2nα
ε

Φ2χ

)− 1
D−2

. (23)

Note that a mass scale f was introduced here.
Now we can rewrite Eq. (20) to the following Lagrangian

L/
√
−ĝ = − 1

4e2
φ2D−4

D−2 ĝµρĝνσF̂µνF̂ρσ −
1
2

(
∂µφ−

D − 2
2

Âµφ

)2

− 1
4
λφ

2D
D−2 − (n− 1)α

( ε

2nα

) n
n−1

φ
2D

D−2
− 2n

n−1
(
fD−2 − φ2

) n
n−1

+
1
2
εfD−2

(
R̂− 2(D − 1)∇̂µÂµ − (D − 1)(D − 2)ÂµÂµ

)
,

where

φ ≡ f
D−2

2

(
1 +

2nα
ε
χn−1

)−1/2

(24)

and “ˆ” indicates the derived quantities from new variables. We should note
that R̂ÂµÂµ term and higher terms of the scalar curvature R̂ disappear in
this expression.

4. Cosmology of Weyl’s gauge gravity

Since we obtained the Weyl’s gauge invariant Lagrangian in the Ein-
stein frame, we can study the cosmology by using this Lagrangian. Also we
consider in four dimensions: D = 4 and the order of higher derivative of
curvature as n = 2.

The Lagrangian (24) reads

L√
−ĝ

=
1
2
εf2

(
R̂− 6ÂµÂµ

)
− 1

2

(
∂µφ− Âµφ

)2

− 1
4e2

F̂ 2 − ε2

16α
(
f2 − φ2

)2 − 1
4
λφ4 . (25)

This Lagrangian becomes markedly simple for D = 4, namely, it consists
of a massive vector meson and a canonical scalar sector with a polynomial
potential which leads to a spontaneously symmetry breakdown. Hence, the
Universe is expected to behave similarly to the well-known inflationary sce-
nario for our minimal Lagrangian (19). From Eq. (25), the conformal vector
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field could not be candidate of inflaton but could affect the evolution of
our Universe. The cosmology of Weyl’s gauge gravity has been investigated
in four dimensions by Kao [17]. He has focused on the higher curvature
term R2 and introduced an effective potential which the scalar field leads to
symmetry-breakdown in the low energy region. Also the vector mesons are
not taken into account in contrast to our model. As this result, his model
missed the canonical form of the scalar sector.

5. Summary and outlook

In the early stage of the Universe, vector inflations have been discussed
as the alternative to the successfully inflationary scenarios based on scalar
bosons. However, these inflaton have not been completely supported by
relevant fundamental theory of physics. Also the gravity theory is expected
to be different from the Einstein gravity in the very early Universe. In
particular, gravitational physics is speculated to have a symmetry of scale
invariance near Planck scale like other particle physics.

Thus, we study the possibility of the Weyl’s gauge invariant theory as
a fundamental theory in the early Universe. One of the reasons is that the
Weyl’s gauge invariant scalar and vector field can be naturally introduced.
We construct the Weyl’s gauge invariant Lagrangian in arbitrary dimensions
that includes an arbitrary higher order of the scalar curvature Rn. This
Lagrangian has the RAµAµ term. In order to investigate the cosmology, we
rewrite this Lagrangian to the the Einstein-like form by using the Weyl’s
gauge transformation.

Especially, for D = 4, the transformed Lagrangian is markedly simple.
In this Lagrangian, R̂ is not minimally-coupled to the massive vector Âµ.
Therefore, the Weyl’s gauge invariant vector field could not be an inflaton
of the vector inflation. However, the Lagrangian has a scalar boson with
polynomial potentials, namely, the canonical scalar sector with φ4-potential.
Hence the Universe behaves similarly to the ordinary one which has been
discussed by many authors.

While the massive the vector field could not be inflaton of the vector
inflation, nevertheless, it is expected that the vector meson relates to the
dark matter and dark energy. It is worth noting that the study of the
cosmology of Weyl’s gravity by Kao [17]. In the contrast to our model, he
has focused on the higher derivative R2 and introduced an effective scalar
potentials but not taken the vector fields into account. From these reasons,
the effective action missed the canonical form of the scalar sector. From
the Weyl’s gauge gravity point of view, if the inflaton is the Weyl’s gauge
invariant scalar, the nature seems to select the polynomial potential instead
of one in the new inflation.
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We need to analyze the behavior of vector field to obtain rigorous be-
havior of the inflaton. It will be studied in a separate publication. Also we
should investigate the generalization to the case of higher and lower dimen-
sions. This will be published in the forthcoming paper.

This study is supported in part by the Grant-in-Aid of Nikaido Research
Fund.
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