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The forward–backward long-range multiplicity correlations in proton–
proton collisions are investigated in the model with two independent sources
of particles: one left- and one right-moving wounded nucleon. A good
agreement with the UA5 Collaboration proton–antiproton data at the c.m.
energy of 200 GeV is observed. For comparison the model with only one
source of particles is also discussed.
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1. Introduction

Recently, the pseudorapidity particle density from a wounded nucleon1

was determined by analysing the PHOBOS data [2] on deuteron-gold colli-
sions at

√
s = 200 GeV in the framework of the wounded nucleon [3] and the

wounded quark–diquark [4] models. The obtained fragmentation function2

has two characteristic features. It is peaked in the forward direction and
it substantially feeds into the opposite hemisphere, as shown in Fig. 1. In
Ref. [6] very similar shape of the contribution from a wounded nucleon was
found at SPS energy of

√
s = 17.3 GeV. The possible explanation of the

main features of the wounded nucleon fragmentation function was proposed
in Ref. [7] in the model based on the bremsstrahlung mechanism [8].

It is interesting to notice that the picture in which the wounded nucleon
populates particles into the opposite hemisphere implies specific long-range
forward–backward multiplicity correlations. This problem will be investi-
gated here in the context of the UA5 pp̄ forward–backward multiplicity cor-
relation data at

√
s = 200 GeV [9]. Namely, we will test the model with

1 The wounded nucleon is the one which underwent at least one inelastic collision [1].
2 In this picture all soft particles are produced independently from left- and right-

moving wounded nucleons. It is very similar to the assumption of independent
hadronization of strings in the dual parton model [5].
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two independent sources of particles, see Fig. 2, with the wounded nucleon
fragmentation function shown in Fig. 1. For comparison, we will also study
the model in which particles are produced from only one source of particles.
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Fig. 1. The pseudorapidity density of produced charged particles from a right-
moving wounded nucleon at

√
s = 200 GeV c.m. energy. ρR(η) substantially feeds

into the opposite hemisphere which implies specific long-range forward–backward
multiplicity correlations.

Fig. 2. The model of soft particle production in proton–proton collisions with two
independent sources of particles: left- and right-moving wounded nucleons. The
arrows indicate that each wounded nucleon may populate particles into both pseu-
dorapidity intervals with appropriate probabilities.

Our main conclusion is that the model with two independent sources of
particles and the wounded nucleon fragmentation function extracted from
the PHOBOS d–Au data is fully consistent with the UA5 pp̄ forward–
backward multiplicity correlation data at

√
s = 200 GeV. At the same time

we conclude that the model with only one source of particles is in a very
clear disagreement with the data.

Let us emphasize here that the idea of the multicomponent model of soft
particle production is not new and was successfully applied to the forward–
backward multiplicity correlations data by many authors [5, 10–15]. Our
model with two sources of particles has very much in common with the dual
parton model [5] or the two-chain dual model with non-zero asymmetry of
each chain [10,11]. For other approaches see Refs. [16,17].
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In the next section basic formulae are introduced. In Section 3 we present
our model in detail and derive for pp collisions the analytical expressions for
the correlation coefficient and the functional relation between the average
number of particles in the backward interval at a given number of particles
in the forward one. We also discuss the limit of one-source model. In Sec-
tion 4 our results are tested using UA5 pp̄ forward–backward multiplicity
correlation data. Our conclusions are listed in the last section, where also
some comments are included.

2. General formulae

It is convenient to construct the generating function

H (zB, zF ) =
∑

nB ,nF

P (nB, nF ) znB
B znF

F , (1)

where P (nB, nF ) is the probability in pp collisions to find nB particles in B
interval and nF particles in F interval, see Fig. 2. It is worth to notice that
the generating function (1) contains all information about the multiplicities
in B and F .

The correlation coefficient (or correlation strength) is defined as

b =
〈nBnF 〉 − 〈nB〉 〈nF 〉〈

n2
F

〉
− 〈nF 〉2

, (2)

where nB and nF are event by event particle multiplicities in B and F inter-
vals, respectively. If the number of particles in B interval does not depend
on the number of particles in F i.e., 〈nBnF 〉 = 〈nB〉 〈nF 〉 we have b = 0.
On the other hand, if nB = nF in every event then b = 1 (maximum cor-
relation). Using definition (1) the correlation coefficient b can be expressed
by the appropriate derivatives of the generating function

〈nBnF 〉 − 〈nB〉 〈nF 〉 =
[

∂2H

∂zB∂zF
− ∂H

∂zB

∂H

∂zF

]
zB=1,zF =1

,

〈
n2

F

〉
− 〈nF 〉2 =

[
∂2H

∂z2
F

+
∂H

∂zF
−
(
∂H

∂zF

)2
]

zB=1,zF =1

. (3)

It is also interesting to study the functional relation between the average
number of particles 〈nB〉 in B interval under the condition of nF particles
in F interval

〈nB〉 |nF =

∑
nB
nBP (nB, nF )∑

nB
P (nB, nF )

, (4)
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where the numerator and denominator can be expressed by the derivatives
of the generating function (1)∑

nB

P (nB, nF ) =
1
nF !

∂nFH (zB, zF )
∂znF

F

∣∣∣∣
zB=1,zF =0

,

∑
nB

nBP (nB, nF ) =
1
nF !

∂

∂zB

∂nFH (zB, zF )
∂znF

F

∣∣∣∣
zB=1,zF =0

. (5)

In the next section we calculate (2) and (4) in two models of particle
production.

3. Model

The schematic view of our model is presented in Fig. 2. We assume
that in pp collisions all soft particles are produced from two independent
wounded nucleons3, which populate particles according to the fragmentation
function4 presented in Fig. 1. Additionally, we assume that in pp collisions
the multiplicity distribution in the combined interval B + F is described be
the negative binomial (NB) distribution

PNB(n, n̄, k) =
Γ (n+ k)

Γ (n+ 1)Γ (k)

( n̄
k

)n (
1 +

n̄

k

)−n−k

, (6)

where n̄ is the average multiplicity in B + F and 1/k measures deviation
from Poisson distribution. It is obvious that n̄ can be calculated as

n̄ =
∫

B+F

[ρR (η) + ρL (η)] dη = 2
∫

B+F

ρR (η) dη , (7)

where ρR (η) and ρL (η) = ρR (−η) are the pseudorapidity densities of pro-
duced particles from the right- and left-moving wounded nucleons, respec-
tively.

Recently, we have shown [18] that the generating function (1) in the
framework of the above-mentioned model may be written as

H (zB, zF ) =
{

1 +
n̄

k
[pLB (1− zB) + pLF (1− zF )]

}−k/2

×
{

1 +
n̄

k
[pRB (1− zB) + pRF (1− zF )]

}−k/2

, (8)

3 The detailed discussion of this assumption and its successful applications can be
found in Refs. [3, 4, 6, 18].

4 In the c.m. frame a contribution from the left-moving wounded nucleon ρL(η) =
ρR(−η).



Long-range Multiplicity Correlations in Proton–Proton Collisions 2475

where pRF is the probability that a particle originating from the right-moving
wounded nucleon goes to F interval rather than to B (and analogous for
pRB, pLB and pLF ), see Fig. 2. These probabilities satisfy the following
conditions

pLB + pLF = 1 , pRB + pRF = 1 . (9)

These numbers can be easily calculated using the wounded nucleon fragmen-
tation function. For instance, pRF has the form

pRF =

∫
F ρR (η) dη∫

B+F ρR (η) dη
. (10)

Taking (2), (3) and (8) into account and performing elementary calcu-
lations, the following expression for the correlation coefficient in the model
with two independent sources of particles is obtained

b =
n̄(pLBpLF + pRBpRF )

n̄(p2
LF + p2

RF ) + k(pLF + pRF )
. (11)

Assuming that intervals B and F are separated enough so that F can be
populated only by the right-moving nucleon and B only by the left-moving
one i.e., pLB = pRF = 1 and pLF = pRB = 0 we obtain b = 0. Thus, we
immediately predict the noticeable suppression of the correlation coefficient
b with increasing distance between B and F intervals.

In the model with two independent sources of particles the relation be-
tween the average number of particles 〈nB〉 in the backward interval B
at a given number of particles nF in the forward interval F has the form
[see (4), (5) and (8)]

〈nB〉 |nF =
kn̄pLB

2 (k + n̄pLF )
2F1(1 + k/2,−nF , 1− nF − k/2, ξ)

2F1(k/2,−nF , 1− nF − k/2, ξ)

+
n̄pRB (nF + k/2)

k + n̄pRF

2F1(k/2,−nF ,−nF − k/2, ξ)
2F1(k/2,−nF , 1− nF − k/2, ξ)

, (12)

where

ξ =
pLF (k + n̄pRF )
pRF (k + n̄pLF )

, (13)

and the hypergeometric function 2F1(a,−nF , 1− c, ξ) is defined as

2F1(a,−nF , 1− c, ξ) =
Γ (1 + nF )
Γ (a)Γ (c)

nF∑
M=0

Γ (a+M)Γ (c−M)
M !(nF −M)!

ξM . (14)
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For comparison we also derive the appropriate formulae in the model
with only one source of particles. These expressions can be easily obtained
from (11) and (12) by deactivating one of the sources e.g., the left one. In
this case pLB = pLF = 0 (thus ξ = 0) and pRB ≡ pB and pRF ≡ pF where
pB + pF = 1. Finally

b =
pBn̄

k + pF n̄
, (15)

and

〈nB〉 |nF =
pBn̄

k + pF n̄

(
k

2
+ nF

)
. (16)

This closes the theoretical discussion of the problem.

4. Results

In the present section we test our results using the UA5 pp̄ forward–
backward multiplicity correlation data at

√
s = 200 GeV. The measurement

was performed in the pseudorapidity range of |η| < 4 for various symmetric
(around η = 0) forward and backward intervals. In this case, taking the
model with two independent sources, we have pRF = pLB ≡ p and pRB =
pLF = 1− p, where probability p is calculated from Eq. (10). In the model
with only one source we always have pB = pF = 1/2.

In Figs. 3 and 4 the correlation coefficient b for various symmetric pseu-
dorapidity intervals is presented. The experimental data (squares) are taken
from Refs. [9, 19]. The grey and dashed bands represent the results of the
model with two independent sources and the model with a single source,
respectively. The widths of the bands reflect the uncertainty coming from
the unknown precise value of k from NB distribution fits [20] to the pp̄
multiplicity data. In Fig. 3 the forward and backward intervals are cho-
sen as: B = (−4,−∆η/2) and F = (∆η/2, 4) with ∆η = 0, 1, 2, 3, 4, 5, 6.
In Fig. 4 the forward and backward intervals of constant widths of 1 are:
B = (−∆η/2 − 1,−∆η/2) and F = (∆η/2,∆η/2 + 1). The parameters p
and n̄ are calculated using Eqs. (10), (7) and the wounded nucleon fragmen-
tation function shown in Fig. 1. All parameters used in these calculations
are listed in Tables I and II. In both cases the main source of uncertainties
is the NB parameter k, which is not precisely known for all intervals [20].

As can be observed the model with two independent sources of particles
allows to understand the main features of the data. It is worth noticing that
the strong suppression of the correlation coefficient b with increasing ∆η
is fully determined by the suppression of particle production from a single
wounded nucleon to the backward hemisphere. Clearly, the model in which
particles are produced from the single source is incorrect.
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Fig. 3. The forward–backward multiplicity correlation coefficient b as a function of
the distance ∆η between the backward B and forward F intervals. Data points
(squares) measured in pp̄ at

√
s = 200 GeV are compared with the results of two

models: two independent sources of particles (grey band) and the model with a
single source (dashed band). The widths of the bands reflect the uncertainty in the
value of k from NB fits to the pp̄ multiplicity data.
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Fig. 4. The same as in Fig. 3 but now the width of each interval is fixed and
equals 1.

TABLE I

The parameters used in the calculations of the results presented in Fig. 3.

∆η F interval n̄ k p

0 0.0 < η < 4.0 17.4 3.70± 0.30 0.70
1 0.5 < η < 4.0 15.1 3.85± 0.35 0.73
2 1.0 < η < 4.0 12.6 3.95± 0.40 0.76
3 1.5 < η < 4.0 10.2 4.10± 0.50 0.80
4 2.0 < η < 4.0 7.71 4.25± 0.55 0.84
5 2.5 < η < 4.0 5.39 4.35± 0.60 0.89
6 3.0 < η < 4.0 3.30 4.50± 0.70 0.94
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TABLE II

The parameters used in the calculations of the results presented in Fig. 4.

∆η F interval n̄ k p

0 0.0 < η < 1.0 4.76 2.30± 0.30 0.54
1 0.5 < η < 1.5 4.88 2.70± 0.40 0.59
2 1.0 < η < 2.0 4.94 3.05± 0.45 0.64
3 1.5 < η < 2.5 4.78 3.40± 0.50 0.70
4 2.0 < η < 3.0 4.41 3.80± 0.60 0.76
5 2.5 < η < 3.5 3.90 4.10± 0.60 0.85
6 3.0 < η < 4.0 3.30 4.50± 0.70 0.94

In Fig. 5 the relation 〈nB〉 |nF between the average number of particles
〈nB〉 in B interval at a given number of particles nF in F interval is shown.
The measurement was performed in two symmetric pseudorapidity intervals
B = (−4, 0) and F = (0, 4). Taking Eqs. (10), (7) into account we obtain
p = 0.7 and n̄ = 17.4. The main source of uncertainties is the measured
value of k = 3.7± 0.3 [20].
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Fig. 5. The relation between the average number of particles in the backward
interval 〈nB〉 at a given number of particles nF in the forward one. The UA5 pp̄
experimental data (squares) at

√
s = 200 GeV are compared with the results of the

model with two independent sources of particles (grey band) and the model with
a single source (dashed band). The widths of the bands reflect the uncertainty in
the value of k from NB fits to the pp̄ multiplicity data.

The model with two independent sources of particles again correctly
describes the data5. It is interesting to note that our formalism predicts
some deviations from linearity, which are too small to be noticeable at a
given experimental precision.

5 Except maybe the region of nF 6 3.
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5. Conclusions and comments

Our conclusions can be formulated as follows.

(i) Assuming that in pp collisions soft particles are produced from two in-
dependent sources: left- and right-moving wounded nucleons, we have
derived the formulae for the forward–backward multiplicity correlation
coefficient b and the functional relation between the average number of
particles in the backward interval 〈nB〉 at a given number of particles
nF in the forward one. This is compared with the case where only one
source contributes to particle spectrum.

(ii) We compared our results with the UA5 pp̄ data at
√
s = 200 GeV.

We conclude that the model with two independent sources of parti-
cles allows to understand the main features of the forward–backward
correlation data. As far as the correlation coefficient is concerned, we
observed very nice qualitative agreement, particularly linear suppres-
sion of b with increasing distance between the forward and backward
intervals. This effect is fully determined by the suppression of the par-
ticle production from a wounded nucleon to the backward hemisphere.

(iii) We also successfully described the functional relation of the average
number of particles in the backward interval 〈nB〉 at a given num-
ber nF of particles in the forward one. It is interesting to note that
our formalism predicts some deviations from linearity, which are too
small to be noticeable at a given experimental precision. It would be
interesting to study this effect in the future experiments.

(iv) The model in which the particles are produced from a single source is
in a clear disagreement with the data.

Following comments are in order.

(a) The presented analysis was performed only at
√
s = 200 GeV since

for higher energies the wounded nucleon fragmentation functions are
unknown. Studying the correlation data at higher energies should
allow to extract these functions.

(b) Assuming 〈nB〉 |nF to be in the parabolic form with the quadratic term
n2

F c in the range nF < 40 and nF < 50 we obtained c ≈ −0.0045 and
−0.0035, respectively. It is interesting to note that qualitatively similar
tendency was observed in the quantum-statistical approach [21].
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