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The goal of the recently approved space-based LARES mission is to
measure the general relativistic Lense–Thirring effect in the gravitational
field of the spinning Earth at a repeatedly claimed 1% accuracy by com-
bining its node Ω with those of the existing LAGEOS and LAGEOS II
laser-ranged satellites. In this paper we show that, in view of the lower
altitude of LARES (h = 1450 km) with respect to LAGEOS and LAGEOS
II (h ' 6000 km), the cross-coupling between the effect of the atmospheric
drag, both neutral and charged, on the inclination of LARES and its classi-
cal node precession due to the Earth’s oblateness may induce a 3–9% year−1

systematic bias on the total relativistic precession. Since its extraction from
the data will take about 5–10 years, such a perturbing effect may degrade
the total accuracy of the test, especially in view of the large uncertainties
in modeling the drag force.

PACS numbers: 04.80.Cc, 91.10.Sp, 94.05.Hk, 91.10.Qm

1. Introduction

The LARES (LAser RElativity Satellite) satellite, recently approved1

by the Italian Space Agency, should have been launched at the end of2
2009 with a VEGA rocket in a circular orbit inclined by 71.5 deg to the
Earth’s equator at an altitude of3 1450 km (Barbagallo 2008). Its goal is

† Address for correspondence: Viale Unità di Italia 68, 70125, Bari (BA), Italy.
1 See http://www.asi.it/SiteEN/MotorSearchFullText.aspx?keyw=LARES
2 See http://www.esa.int/esapub/bulletin/bulletin135/bul135f_bianchi.pdf
Actually, the launch date has been postponed to the end of 2010 or the beginning of
2011. http://www.spacenews.com/civil/100115-asi-expects-budget-remain
-flat-2010.html

3 In its originally proposed configuration (Ciufolini 1986) the semi-major axis of LARES
was equal to that of LAGEOS, i.e. a = 12270 km.
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a measurement of the general relativistic gravitomagnetic Lense–Thirring
effect (Lense, Thirring 1918) due to the Earth’s rotation at a repeatedly
claimed ' 1% level of accuracy in conjunction with the existing LAGEOS
and LAGEOS II laser-ranged satellites which fly at much higher altitudes,
i.e. h ' 6000 km. The observable is a suitable linear combination of the
longitudes of the ascending nodes Ω of the three satellites, because the
gravitomagnetic field of the Earth induces a secular precession on such a
Keplerian orbital element

Ω̇LT =
2GL

c2a3(1− e2)3/2
, (1)

where G is the Newtonian gravitational constant, L is the Earth’s spin an-
gular momentum, c is the speed of light in vacuum, a is the satellite’s semi-
major axis and e is its eccentricity. In Table I we quote the Lense–Thirring
precessions for LAGEOS, LAGEOS II and LARES: their magnitudes are of
the order of 101–102 milliarcseconds per year (mas yr−1 in the following).

TABLE I

LAGEOS, LAGEOS II and LARES: orbital parameters and node precessions due
to the terrestrial gravitomagnetic field and the first two even zonal harmonics
for L⊕ = 5.86 × 1033 kgm2 s−1 (McCarthy, Petit 2004), J2 = 0.00108263538,
J4 = −1.619989× 10−6 (Tapley et al. 2007).

Satellite a e I Ω̇LT Ω̇J2 Ω̇J4

(km) (deg) (mas yr−1) (mas yr−1) (mas yr−1)

LAGEOS 12270 0.0045 109.9 30.7 4.538082658× 108 −2.501490× 105

LAGEOS II 12163 0.014 52.65 31.5 −8.303252509× 108 9.05051× 104

LARES 7828 0.0 71.5 118.1 −2.0298207310× 109 2.8925357× 106

The much larger classical secular precessions induced on Ω by the even
zonal harmonic coefficients J`, ` = 2, 4, 6, . . . of the multipolar expansion of
the terrestrial gravitational potential accounting for the centrifugal oblate-
ness of our planet (Kaula 1966) are a major source of systematic uncertainty.
They can be written as

Ω̇obl =
∑
`=2

Ω̇.`J` , (2)

where the coefficients Ω̇.` depend on the Earth’s mass M and equatorial
radius R, and of the orbital geometry of the satellite through a, e and the
inclination I of the orbital plane to the Earth’s equator. Since they have
the same temporal signature of the relativistic effect of interest, they cannot
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be subtracted from the signal without affecting the recovery of the Lense–
Thirring effect itself. Thus, it is of the utmost importance to realistically
assess the uncertainty in them in order to evaluate their percent impact
on the gravitomagnetic shift. More specifically, the magnitude of the node
secular precessions due to the first two even zonals for LAGEOS, LAGEOS II
and LARES are listed in Table I. It can be noted that the J2-induced rates
are of the order of 108–109 mas yr−1, i.e. seven orders of magnitude larger
than the Lense–Thirring precessions. The perturbations by J4 are of the
order of 105–106 mas yr−1, i.e. four orders of magnitude larger than the
gravitomagnetic effects. Such figures immediately demonstrate the difficulty
of determining a smallish relativistic effect with respect to a huge classical
one, which needs, thus, to be accounted for with the appropriate accuracy
(about one part in 1010), or, as combining the three satellite data sets aims
at (see Section 3), removed from the signal with the same accuracy.

Up to now major efforts have been devoted to evaluate the bias due to
the lingering uncertainty δJ` in the even zonals according to

δΩ̇obl
J`
≤
∑
`=2

|Ω̇.`|δJ` . (3)

A reliable evaluation of such a corrupting effect is made difficult by the fact
that the relatively low altitude of LARES brings into play more even zonals
than done by LAGEOS and LAGEOS II (Iorio 2009).

Concerning the non-conservative orbital perturbations (Milani et al. 1987)
like direct solar radiation pressure, Earth’s albedo, direct Earth’s infrared
radiation, atmospheric drag, thermal effects like the Yarkovski–Schach and
Rubincam ones, they have been so far regarded as a minor concern because
their direct impact on the node of the LAGEOS-type satellites is . 1% of
the Lense–Thirring effect (Lucchesi 2001, 2002).

In this paper we want to investigate their indirect effects through the
cross-coupling (Kaula 1966)

δΩ̇obl
I ≤

∣∣∣∣∣∂Ω̇.`∂I
J`

∣∣∣∣∣ δI (4)

between the zonals-induced node precessions and certain non-gravitational
perturbations affecting the LARES inclination. We will show that, in par-
ticular, the impact of the atmospheric drag on ILR may play an important
role in the evaluation of the error budget of the Lense–Thirring test. In-
deed, although the direct secular effect of the atmospheric drag on the node
vanishes, it is not so for the indirect one due to the non-vanishing secular
decrease of the inclination which maps onto a node effect. Moreover, we will
point out that it should not be possible to correct the signal for the measured
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value of I arc by arc without likely affecting the gravitomagnetic signal of
interest itself. Clearly, since the non-gravitational perturbations do depend
on the particular type of satellite considered and since LARES has not yet
been launched in orbit, our investigation should not be required to be more
accurate than it can be in the sense that it must be viewed as a reason-
able sensitivity analysis pointing out a possible source of potential bias and
evaluating conservatively the largest possible size of the effect examined.

The paper is organized as follows. In Section 2 we calculate the secular
rate of the inclination of a LAGEOS-type satellite induced by a drag force
and compute it for LARES. In Section 3 we calculate its indirect effect on the
Lense–Thirring shift through the secular precession due to the even zonal
harmonics. We also briefly discuss other non-gravitational perturbations
which may cause a secular variation of the LARES inclination in Section 4.
Section 5 is devoted to the conclusions.

2. The effect of the atmospheric drag on the inclination
of LARES

The Gauss equation for the variation of the inclination I is (Milani et al.
1987)

dI

dt
=

r cosu
na2
√

1− e2
Aν , (5)

where n .=
√
GM/a3 is the un-perturbed Keplerian mean motion, u .=

g + f is the argument of latitude, defined as the sum of the argument of
pericentre g, which fixes the position of the pericentre with respect to the
line of the nodes, and the true anomaly f which reckons the instantaneous
position of the spacecraft from the pericentre, and Aν is the out-of-plane
component of the perturbing acceleration A.

The drag force per unit mass is (King-Hele 1987)

AD = −1
2CDΣρV V , (6)

where
V = v − V A (7)

is the satellite velocity with respect to the atmosphere; v and V A are the
geocentric satellite and atmosphere velocities, respectively. The other pa-
rameters entering Eq. (6) are the drag coefficient CD, which depends in a
complicated way on the interaction between the gas of particles in the sur-
roundings of the satellite and its surface (Afonso et al. 1985, Milani et al.
1987) Σ .= S/m is the area-to-mass ratio4 of the satellite, and ρ is the
density of the atmosphere.

4 S denotes the spacecraft cross-sectional area (perpendicular to the velocity).
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The velocity of the atmosphere, known as ambient velocity, can be writ-
ten in terms of geocentric inertial quantities as

V A = ωA × r , (8)

with
ωA = (1 + ξ)ω⊕ = (1 + ξ)ω⊕ k , (9)

where k is the unit vector of the z-axis in an inertial geocentric frame chosen
aligned with the Earth’s angular velocity vector. Note that Eq. (9) accounts
for the fact that the atmosphere, in general, does not co-rotate exactly with
the Earth; maximum observed deviations from the simplifying assumption
of exact co-rotation are of the order of 40% (King-Hele 1987). Thus,

V A = ωA (−y i + x j) , (10)

where i and j are the unit vectors in the reference {xy} plane of the geo-
centric inertial frame which coincides with the Earth’s equator; the angle
between v, which lies in the orbital plane, and V A is the inclination I.

In order to have the out-of-plane component Aν of the drag acceleration
evaluated onto the un-perturbed Keplerian ellipse, to be inserted into the
right-hand-side of Eq. (5), V must be projected onto the n̂ direction of the
frame co-moving with the satellite; since

n̂ = sin I sin Ω i− sin I cos Ω j + cos I k , (11)

then, by choosing Ω = 0,

V A · n̂ = −ωAx sin I . (12)

Onto the unperturbed orbit

x = r cosu cos Ω − sinu cos I sin Ω , (13)

so that it is possible to obtain

V A · n̂ = −ωAr sin I cosu . (14)

Since
v = vr r̂ + vt t̂ , (15)

it appears clear that if the Earth’s atmosphere did not rotate there would
not be any out-of-plane component of the drag acceleration which, instead,
exists because V A · n̂ 6= 0 for non-equatorial orbits. Thus, the out-of-plane
component of Eq. (6) is

Aν = −1
2CDΣρV ωAr sin I cosu . (16)
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It turns out that it can be posed (Abd El-Salam, Sehnal 2004)

V = |v − V A| ' v
√
kR , kR ' 1 , (17)

so that
Aν ' −1

2CDΣρvωAr sin I cosu . (18)

Concerning the approximations used in Eq. (17) and Eq. (18), they are
justified since

kR
.= 1 +

(
VA

v

)2

− 2
(
VA

v

)
cos I , (19)

where typically VA ' 0.5 km s−1 because of Eq. (9) and Eq. (10) (see
also Table II), and v '

√
GM/a = 7.1 km s−1 for orbital heights of about

1400 km.
By inserting Eq. (18) into Eq. (5) with the un-perturbed relations

r =
a(1− e2)
1 + e cos f

, v = na

√
1 + e2 + 2e cos f

1− e2
, (20)

and integrating over an orbital period Pb by means of

dt

Pb
=

(1− e2)3/2

2π(1 + e cos f)2
df , (21)

one finds that there is a non-vanishing secular rate of the inclination to order
zero in the eccentricity〈

dI

dt

〉
= −1

4
CDΣρωAa sin I ; (22)

it agrees with (6.17) by5 Milani et al. (Milani et al. 1987). In obtaining
Eq. (22) we considered the atmospheric density ρ constant over one orbital
revolution; since for LARES Pb = 3.7 h, this is certainly a reasonable as-
sumption. In general, ρ undergoes many irregular and complex variations
both in position and time, being largely affected by solar activity and by
the heating and cooling of the atmosphere (King-Hele 1987, Abd El-Salam,
Sehnal 2004).

According to Table II, the inclination of LARES will experience a secular
decrease of 〈

dI

dt

〉
LR

= −3× 10−9 rad yr−1 = −0.6 mas yr−1, (23)

5 ∆I in (Milani et al. 1987) is the shift per revolution; in order to be confronted with
Eq. (22), (6.17) by Milani et al. (1987) must be divided by Pb = 2π/n. By putting
Z → 1 and v = na one recovers just Eq. (22).
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where mas stands for milliarcseconds. Concerning the node, whose Gauss
variation equation is identical to Eq. (5) with cosu replaced by sinu/ sin I,
it can be shown that there are no secular effects induced by the atmospheric
drag on it; the first non-vanishing term is proportional to e2 sin 2g.

TABLE II

Relevant physical and orbital parameters of the Earth-LARES system. The quoted
value for CD is usually used in literature, but it refers typically to altitudes of some
hundreds km; at 1450 km it may be larger (Milani et al. 1987). The value of
the area-to-mass ratio Σ has been obtained by using for LARES a diameter of
d = 37.6 cm and a mass of m = 400 kg (http://esamultimedia.esa.int/docs/
LEX-EC/CubeSat%20CFP%20issue%201.pdf). The value of ρ is that for the Ajisai
satellite (Sengoku et al. 1996) which has a semimajor axis of 7870 km. Concerning
the rotation of the atmosphere, the quoted value has been obtained by assuming
it is about 20% faster than the Earth itself.

Parameter Value Units Reference

GM⊕ 3.986004418× 1014 m3 s−2 (McCarthy, Petit 2004)
R⊕ 6378136.6 m (McCarthy, Petit 2004)
J2 0.00108263538 — (Tapley et al. 2007)
aLR 7828× 103 m (Barbagallo 2008)
eLR 0 — (Barbagallo 2008)
ILR 71.5 deg (Barbagallo 2008)
CD 2.2 — (Abd El-Salam, Sehnal 2004)
Σ 3× 10−4 m2 kg−1 (See caption)
ρ 1× 10−15 kg m−3 (Sengoku et al. 1996)
ωA 8.750538× 10−5 s−1 —

3. The impact of the secular decrease of the inclination
on the node precession due to the oblateness

Such a decrease of ILR affects also the secular precession of the spacecraft
node due to the oblateness of the Earth which is a major corrupting effect
for the Lense–Thirring signal.

Indeed, since

Ω̇J2 = −3
2
n

(
R

a

)2 cos I J2

(1− e2)2
(24)

a bias

δΩ̇i =
3
2
n

(
R

a

)2 sin I J2

(1− e2)2

〈
dI

dt

〉
∆t (25)
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occurs. For LARES Eq. (25) yields a shift of 18.8 mas yr−1 over one year;
since the Lense–Thirring precession of the node of LARES amounts to
118 mas yr−1, the cross-coupling of the inclination perturbation with the
oblateness would yield a systematic error of 16% over just one year.

In fact, the data of LARES will be combined with those of the exist-
ing LAGEOS and LAGEOS II spacecraft according to the following linear
combination of their nodes (Iorio 2005)

Ω̇LAGEOS + c1Ω̇LAGEOS II + c2Ω̇LARES ,

c1 = 0.358642219 , c2 = 0.075117522 (26)

in order to cancel out the impact of the mismodelling δJ2 and δJ4 of the
first two even zonal harmonics; the general relativistic prediction of the total
Lense–Thirring shift, according to the linear combination of Eq. (26), is
50.7 mas yr−1. The combination of Eq. (26) is based on a strategy put forth
for the first time in (Ciufolini 1996). It turns out that the impact of Eq. (22)
on Eq. (26) is 3% yr−1. Note that since c1 and c2 are aimed at removing
the classical effects by J2 and J4 to the needed extent, we released them
with nine decimal digits, i.e. with the matching accuracy. Indeed, as shown
by Table I, the largest classical effect is about seven orders of magnitude
larger than the Lense–Thirring precessions, and the claimed accuracy of the
proposed test is 1%. In obtaining such a result we treated the coefficients
c1 and c2, which depend on the semi-major axes, the eccentricities and the
inclinations of the three satellites, as constant numbers; let us check if a
conservative uncertainty of the order of6 δILR ' 1 mas in ILR can affect the
numerical values of c1 and c2 at the ninth decimal digit. It turns out that

|c1(ILR)− c1(ILR + δILR)| = 1.7× 10−9 ,

|c2(ILR)− c2(ILR + δILR)| = 3× 10−10 . (27)

Thus, we can conclude that the uncertainty in determining the inclination of
LARES is not a concern about the accuracy required to compute c1 and c2.
By repeating the same analysis for the semimajor axis aLR of LARES, it
turns out that an uncertainty δaLR ' 1 cm yields a similar conclusion be-
cause

|c1(aLR)− c1(aLR + δaLR)| = 5× 10−10 ,

|c2(aLR)− c2(aLR + δaLR)| = 5× 10−10 . (28)

Let us see what could be the impact of the uncertainties in parameters
like CD and ωA on our estimates. For 2 < CD < 2.5 we get a substantially un-
changed bias 2.7–3.4% yr−1. By assuming ωA = ω⊕ = 7.292115× 10−5 s−1,

6 In fact, it may likely be about one order of magnitude smaller because δr ' 1 cm
yields an uncertainty of approximately 0.3 mas at an height of 1450 km.
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i.e. by assuming that the atmosphere co-rotates with the Earth, the bias
amounts to 2.5% yr−1. Concerning the approximation of Eq. (17) used for
V , i.e. V = v

√
kR ' v, it is fully justified in our case. Indeed, (VA/v) cos I

appearing in it can be approximated with (ωA/n) cos I for a circular orbit;
for LARES it amounts to 0.03 only, thus yielding

√
kR = 0.97. It must be

noted that the effect of Eq. (25) should likely affect the LARES data in full
because of the difficulty of realistically modelling the drag force, especially
CD and ρ; just to give an idea of the uncertainty in their values note that
when the solar activity is low a typical atmospheric density at about 1500
km altitude is 2 × 10−16 kg m−3 (Sengoku et al. 1996), while for the exist-
ing LAGEOS satellite the drag coefficient is CD ' 4.9 (Afonso et al. 1985,
Milani et al. 1087). The fact that CD is larger for LAGEOS than for a lower
satellite like LARES is only seemingly contradictory (the higher the orbit,
the smaller the drag). Indeed, the drag coefficient depends on the ratio be-
tween the average thermal molecular speed of the atmosphere VT and the
orbital speed v of the spacecraft. For relatively low orbits, VT ' 1 km s−1

is typically smaller than7 v ' 7.5 km s−1. On the contrary, at higher alti-
tudes the situation changes because v becomes smaller and smaller, while
VT increases rapidly due to higher temperatures and lower mean molecular
weight. In this case, as for LAGEOS, (Afonso et al. 1985)

CD = b

[
2 +

4
3

〈(
VT

v

)2
〉
− 2

15

〈(
VT

v

)4
〉]

, (29)

with b ' 1.4 and 〈VT/v〉 ' 0.8, so that CD ' 4. For more details, see the
discussion in (Milani et al. 1987), pp. 104–107.

In addition to the neutral particle drag considered so far it should also
be taken into account the charged particle drag (Afonso et al. 1985) due
to the fact that a spacecraft moving in a gas of electrons and ions tends
to acquire an electric charge because of the collisions with such particles
and also because of the photoelectric effect caused by solar radiation. The
effect of the charged particle drag can be obtained by re-scaling the one
due to the neutral particle drag by a multiplicative factor b containing,
among other things, the satellite’s potential V0. According to Lucchesi and
Paolozzi (Lucchesi, Paolozzi 2001), it may amount to about V0 = −0.3 V
for LARES, so that b = 3.1 which implies a 9% yr−1 systematic error in
the measurement of the Lense–Thirring effect with Eq. (26). It must be
pointed out that the reduction of the impact of the perturbing accelerations
of thermal origin should have been reached by the LARES team with two
concentric spheres. However, as explained by Andrés (Andrés 2007), this

7 For LARES (see Table I for its orbital parameters) it is v = 7.1 km s−1.
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solution will increase the floating potential of LARES because of the much
higher electrical resistivity, so that the evaluations presented here may turn
out to be optimistic.

Since the extraction of the relativistic effect would require a multi-year
analysis, typically ∆t = 5–10 yr, the action of the overall atmospheric drag
on the LARES inclination may be a serious corrupting effect over such
timescales.

Ciufolini et al. (Ciufolini et al. 2009) objected that, in fact, the disturbing
effect examined would not appear in the real data analysis procedure because
the inclination along with all the other Keplerian orbital elements would be8
“measured” arc by arc, so that one should only have to correct the signal for
the measured value of the inclination; after all, the same problems, if not
even larger, would occur with the semimajor axes of the LAGEOS satellites,
which are known to undergo still unexplained secular decrease of 1.1 mmd−1

(Rubincam 1982) and their consequent mappings onto the node rates. The
problem is that while a perturbation ∆a pertains the in-plane, radial R
component (Christodoulidis et al. 1988) of the LAGEOSs’ orbits, both the
Lense–Thirring node precession and the shifts in the inclination affect the
out-of-plane, normal N component (Christodoulidis et al. 1988) of the orbit;
thus, even if repeated corrections to the semimajor axis could be applied
without affecting the gravitomagnetic signal of interest, the same would
not hold for the inclination. This is particularly true in view of the fact
that, for still unexplained reasons, the Lense–Thirring effect itself has never
been estimated, either as a short-arc or as a global parameter. Moreover,
Ciufolini et al. (Ciufolini et al. 2009) claimed that the recent improvements
in atmospheric refraction modelling would allow to “measure” the inclination
of the LAGEOSs satellites at a level of accuracy, on average, of 30 µ as for
LAGEOS and 10 µ as for LAGEOS II. Firstly, the tracking of a relatively low
satellite is always more difficult than for higher targets, so that caution would
be needed in straightforwardly extrapolating results valid for LAGEOS to
the still non-existing LARES. Second, it is difficult to understand the exact
sense of such claims because they would imply an accuracy δr ' aδI in
reconstructing the orbits of LAGEOS and LAGEOS II, on average, of 0.2 cm
and 0.06 cm, respectively.

4. Other effects potentially inducing secular variations
of the LARES inclination

Among the other non-conservative forces acting on the LAGEOS-type
satellites, also the Rubincam (Rubincam 1987) effect, due to the anisotropic

8 Actually, the Keplerian orbital elements are not directly measurable quantities, con-
trary to, e.g., ranges, range-rates, right ascension, declination.
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re-emission of the infrared radiation of the Earth along the satellite’s spin
axis, is important. Such an effect arises from the fact that the retroreflec-
tors of LAGEOS have a significant thermal inertia of about 3000 s; since
such time of thermal response is shorter than the satellite’s orbital period
Pb = 13526 s and larger than the spin period, whose nominal value was about
1 s at the launch epoch, the perturbation induces a temperature asymmetry
between the hemisphere facing the Earth and the one opposite to it. The
illuminated hemisphere becomes hotter than the dark one only after the
Earth has passed its pole, causing a time lag effect accounted for by the
thermal lag angle θ. A net recoil acceleration ARub directed along the satel-
lite spin axis occurs. It induces a secular rate of the inclination according
to (Lucchesi 2002)〈

dI

dt

〉
= −ARub

8na
sin θ sin 2I

(
3σ2

z − 1
)
. (30)

In it ARub is the Rubincam acceleration which depends in a complex way
on the physical and thermal properties of the satellite and of its array of
retro-reflectors, θ is the thermal lag angle, and σz is the component of the
satellite’s spin along the z axis of a geocentric equatorial inertial frame hav-
ing the x axis along the vernal equinox direction. For LAGEOS II the secular
inclination rate is of the order of 1.5 mas yr−1. By assuming for LARES
the same value of ARub as for LAGEOS II, i.e. ARub ' −7 × 10−12 m s−2,
Eq. (30) yields an effect of the order of about 0.7 mas yr−1. In fact, it might
be finally smaller because of the currently ongoing manufacturing efforts
of the LARES team aimed at reducing the impact of the non-gravitational
perturbations of thermal origin on the new spacecraft with respect to the
LAGEOS satellites (Bosco et al. 2007). Moreover, it will depend on the
direction of the satellite’s spin at the injection in orbit.

5. Conclusions

In this paper we have shown that certain subtle non-gravitational pertur-
bations acting on the forthcoming LARES satellite may corrupt the claimed
goal of performing a ' 1% measurement of the Lense–Thirring effect in
the gravitational field of the rotating Earth because of the lower altitude of
the new spacecraft with respect to the existing LAGEOS and LAGEOS II
spacecraft. In particular, the interplay between the node precessions due
to the even zonal harmonics of the geopotential, which are a major source
of systematic error, and the LARES inclination has been investigated. The
atmospheric drag, both in its neutral and charged components, will induce a
non-negligible secular decrease of the inclination of the new spacecraft yield-
ing a correction to the node precession of degree ` = 2 which amounts to
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3–9% yr−1 of the total gravitomagnetic signal pertaining just the node it-
self. Such a corrupting bias would be very difficult to be modeled. Since the
extraction of the relativistic signature will require a data analysis of about
5–10 yr, the effect examined here may yield a degradation of the achievable
total accuracy of the test. In principle, also the Rubincam effect, of thermal
origin, should be taken into account because it can induce a non-vanishing
secular variation of the inclination. Since both the node and the inclination
enter the out-of-plane, normal component of the orbit of a satellite, it would
not be possible to correct for the measured values of the inclinations arc by
arc without likely affecting also the Lense–Thirring signal itself, especially
because it has never been estimated along with the other parameters.

I am grateful to an anonymous referee for his/her detailed and helpful
comments.
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