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We use the perturbation method to approximately solve subdiffusion-
reaction equations. Within this method we obtain the solutions of the
zeroth and the first order. The comparison our analytical solutions with
the numerical results shown that the perturbation method can be useful to
find approximate solutions of nonlinear subdiffusion-reaction equations.
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1. Introduction

There are a lot of differential equations which have solutions only in a
very few special cases and their general solutions remain unknown. Such an
example is nonlinear differential equation with a fractional time derivative
which describes the subdiffusion-reaction symmetrical system with two ini-
tially separated diffusing particles of species A and B reacting according to
the formula A + B→ ∅(inert) [1, 2, 3]

∂αA(x, t)
∂tα

= D
∂2A(x, t)
∂t2

− kA(x, t)B(x, t) , (1)

∂αB(x, t)
∂tα

= D
∂2B(x, t)
∂t2

− kA(x, t)B(x, t) , (2)
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where A and B denote the concentrations of diffusing particles of species
A and B, respectively, D — their subdiffusion coefficients (the same for
both substances), k is the reaction rate constant and the Caputo fractional
derivative ∂αf(x)/∂tα is defined as [4]

∂αf(t)
∂tα

=
1

Γ (n− α)

t∫
0

dt′
f (n)(t′)

(t− t′)1+α−n , (3)

f (n) denotes the derivative of natural order n and n−1 ≤ α < n. We assume
that the substances are separated from each other at an initial moment and
the initial conditions are

A(x, 0) =
{
C0 , x < 0 ,
0 , x > 0 , B(x, 0) =

{
0 , x < 0 ,
C0 , x > 0 . (4)

The symmetry of the system gives A(−x, t) ≡ B(x, t).
Since the general method of solving fractional subdiffusion-reaction equa-

tions has not been found yet, one usually uses various approximations, such
as the quasistationary approximation [3] or the scaling method [2]. In this
paper, we present an idea to solve differential equations by means of the
perturbation method. The perturbation method is usually used in nonlinear
equations in the following form

∂f

∂x
= F(f) + εG(f) , (5)

where ε is a dimensionless small parameter and it is assumed that the solu-
tion of the equation

∂f0

∂x
= F(f0) , (6)

is known. Then, the solution of Eq. (5) is a power series with respect to the
parameter ε

f =
∞∑
n=0

εnfn . (7)

However, the perturbation method cannot be used directly in Eqs. (1)
and (2). The reason is that the system described by Eqs. (1), (2) and (4)
has its own structure where the depletion zone, the reaction region and
diffusion region occur. As is shown in [3] within the reaction region the
terms on the right hand side of Eq. (1) (or (2)) are comparable to each
other and do not fulfil the assumptions of the perturbation method. Let
us note that the reaction term kAB and the diffusion term D∂2{A,B}/∂x2
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have different scaling properties [2]. We use this scaling property and we
change the variables (x and t) to the dimensionless variables in such a way
that the reaction term will be small compared to the diffusion term. Then,
we need to solve the transformed equations by means of the perturbation
method, and next, we return to the original variables. We expect that the
perturbation method works for the transformed dimensionless equations for
ε � 1 but it is not obvious that the dimensional approximate solutions are
accurate. To check the correctness of these solutions we will compare them
with numerical solutions to Eqs. (1) and (2). In our paper, we will find the
solution of the zeroth and the first order of Eqs. (1) and (2). As far as we
know, the perturbation method has not been yet applied to solve fractional
subdiffusion-reaction equations. We add that the perturbation method was
applied to solve normal diffusion-reaction equations with one static and one
mobile reactants [5].

2. The perturbation method

Firstly, we transform the equations (1) and (2) to the dimensionless form
using the substitutions

x = ρxs , t = τts , (8)

where ρ and τ denote the dimensionless position and time, xs and ts are
constants of the dimension of space and time, respectively. We obtain

∂αa(ρ, τ)
∂τα

=
∂2a(ρ, τ)
∂ρ2

− εa(ρ, τ)b(ρ, τ) , (9)

∂αb(ρ, τ)
∂τα

=
∂2b(ρ, τ)
∂ρ2

− εa(ρ, τ)b(ρ, τ) , (10)

where

a(ρ, τ) =
A(ρxs, τ ts)

C0
, b(ρ, τ) =

B(ρxs, τ ts)
C0

,

xs =
√
Dtαs , ε = ktαs C0 , (11)

with the initial conditions

a(ρ, 0) =
{

1 , ρ < 0 ,
0 , ρ > 0 , b(ρ, 0) =

{
0 , ρ < 0 ,
1 , ρ > 0 , (12)

and the boundary ones

a(−∞, τ) = b(∞, τ) = 1 ,
∂a(ρ, τ)
∂ρ

∣∣∣∣
ρ=0

=
∂b(ρ, τ)
∂ρ

∣∣∣∣
ρ=0

. (13)
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We assume that the solutions to Eqs. (9) and (10) are given in the form
of (7)

a(ρ, τ) =
∞∑
n=0

εnan(ρ, τ) , b(ρ, τ) =
∞∑
n=0

εnbn(ρ, τ) . (14)

Substituting Eqs. (14) to Eqs. (9) and (10) and comparing the functions
of the same order with respect to the variable ε occurring on the both sides
of these equations we obtain the following equations for the functions of the
zeroth order

∂αa0(ρ, τ)
∂τα

=
∂2a0(ρ, τ)

∂ρ2
, (15)

∂αb0(ρ, τ)
∂τα

=
∂2b0(ρ, τ)

∂ρ2
, (16)

with the initial conditions

a0(ρ, 0) = Θ(−ρ) , b0(ρ, 0) = Θ(ρ) , (17)

where Θ is the Heaviside function, and the boundary conditions are{
a0(−∞, τ) = 1 ,
a0(+∞, τ) = 0 ,

{
b0(−∞, τ) = 0 ,
b0(+∞, τ) = 1 . (18)

For n = 1, 2, 3, . . . we obtain the equations for the functions of nth order

∂αan(ρ, τ)
∂τα

=
∂2an(ρ, τ)

∂ρ2
−Rn(ρ, τ) , (19)

∂αbn(ρ, τ)
∂τα

=
∂2bn(ρ, τ)

∂ρ2
−Rn(ρ, τ) , (20)

where

Rn(ρ, τ) =
n−1∑
k=0

ak(ρ, τ)bn−k−1(ρ, τ) , (21)

with the initial condition

an(ρ, 0) ≡ bn(ρ, τ) ≡ 0 , n ≥ 1 , (22)

and the boundary ones

an(−∞, τ) = an(+∞, τ) = 0 , bn(−∞, τ) = bn(+∞, τ) = 0 . (23)

We solve Eqs. (15), (16), (19) and (20) by means of the Laplace transform
method [6]. The zeroth order equations (15) and (16) appear to be subdiffu-
sion equations without chemical reactions. Equations (19) and (20) become
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even more difficult to solve when the order of the perturbation method in-
creases. We will find the exact solutions for ai and bi where i = 0, 1. When
the parameter ε is small (ε � 1), the approximate solutions to Eqs. (9)
and (10) are assumed to be

a = a0 + εa1 , b = b0 + εb1 . (24)

3. Approximate solution to subdiffusion-reaction equations

The calculations are arduous, thus the details of these calculations will
be presented elsewhere. In term of dimensional variables the solutions are

A±(x, t) = A±0 (x, t) +A±1 (x, t) , (25)
B±(x, t) = A±(−x, t) , (26)

where

A−0 (x, t) = C0

[
1− 1

2

∞∑
i=0

1
Γ (1− αk/2)k!

(
x√
Dtα/2

)i]
, (27)

A+
0 (x, t) =

C0

2

∞∑
i=0

1
Γ (1− αk/2)k!

(
− x√

Dtα/2

)i
. (28)

The function A±1 (x, t) is controlled both by chemical reactions and diffusion.
It can be treated as a corrections of A±0 (x, t) which is controlled by the
diffusion process only. Thus, A±1 makes smaller the particles concentration
described by the pure diffusion solution and has a proper physical meaning
for negative values only, and it is expressed by the formula

A±1 (x, t) = C2
0kt

αF±(x, t) , (29)

when F±(x, t) ≤ 0, but we put A±1 (x, t) = 0 when F±(x, t) > 0, where

F±(x, t)− 1
4

∞∑
i=0

Qi

(
x2

Dtα

)i
+
∞∑
i=1

P±i

(
x√
Dtα/2

)i
, (30)

Qi =
1

(2i)!Γ (1− (i− 1)α)
, (31)

P±i =
1

i!Γ (1− α(i/2− 1))

b(i+1)/2c−1∑
m=0

m!e±m , (32)
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buc denotes here an integer part of a number u (buc ≤ u), e±0 = 1/4, e±1 = 0,
and for m ≥ 2 we get

e−m =
1

4k!

1−
m∑
j=1

Γ (1− αm/2)m!
Γ (1− αj/2)j!Γ (1− α(m− j)/2)(m− j)!

 , (33)

e+m =
(−1)m

2m!

1− 1
2

m∑
j=1

Γ (1− αm/2)m!
Γ (1− αj/2)j!Γ (1−α(m− j)/2)(m−j)!

 . (34)
Let us note, that in the functions (25)–(34) the parameter ε is absent.

This absence is caused by making the reciprocal inverse transformation of
the variables (from (x, t) to (ρ, τ) and vice versa). As we have mentioned
above, we expect that the perturbation method gives the accurate solu-
tions for dimensionless equations (19) and (20) when ε � 1. However, it
is not clear whether after transforming the dimensionless solutions into the
dimensional ones these solutions will be correct. In order to ensure this,
we compare the solutions obtained by the perturbation method (26) with
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Fig. 1. Concentration profiles calculated for α = 0.7, D = 0.05, C0 = 1, k = 0.001
and for the times given in the legend; symbols represent the numerical solutions,
lines — the approximate analytical solutions (26) and the zeroth order solutions
(i.e. for the system without chemical reactions).
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the numerical solutions to the subdiffusion-reaction equations (1) and (2).
The numerical procedure of solving the subdiffusion equations is presented
in [3, 7]. In Figs. 1 and 2 we present the comparison between the analyti-
cal and numerical solutions. We observe that this agreement is reasonably
accurate for the times presented in the figures. However, as we can see
in Figs. 1 and 2 the similarity between the approximate solutions and the
numerical ones decreases with ascending time. The zeroth order solutions
corresponding to the solution to pure subdiffusion equations do not match
the numerical solutions accurately but after adding the correction of the first
order this match is considerably improved.
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Fig. 2. The same situation as in Fig. 1 but for α = 0.7, D = 0.05, C0 = 1,
k = 0.0001.

4. Final remarks

In this paper, we find the approximate solution to subdiffusion-reaction
equations (1) and (2) by means of the perturbation method. We calculate
this solution for the zeroth and the first order of the perturbation method
alone. We also compare our analytical solutions with the numerical ones.
This comparison is presented in Figs. 1 and 2. The considerations presented
in our paper show that the perturbation method can be useful in solving
nonlinear subdiffusion-reaction differential equations with fractional time
derivatives.
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