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We describe a status of the software package Axiloop for symbolic
calculations in the axial gauge. The package is dedicated to computations of
the virtual components of the QCD NLO splitting functions in the collinear
factorization scheme and its exclusive extension. We present some aspects
of the employed technique, the structure of the package and results for the
C2

F part of the non-singlet case.
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1. Introduction

The LHC collaborations recently presented strong indications that the
particle discovered at the LHC in the year 2012 is indeed the Higgs boson.
This result opens the era of precision measurements of the properties of the
Higgs boson. High precision measurements at hadron colliders are a theoret-
ical challenge. The basic theoretical tools for the data analysis, the Monte
Carlo programs, are still not on par neither with the analytical calculations
nor with the foreseen experimental precision of LHC experiments. The pop-
ular QCD parton shower Monte Carlo programs PYTHIA [1, 2] and HERWIG
[3, 4] are based on the improved LO accuracy. The NLO corrections in the
hard process have been accounted for in the MC@NLO [5, 6] and POWHEG [7]
projects. Among other approaches, one should mention the GR@PPA [8, 9]
project with some NLO effects included in the cascade and the SHERPA [10]
project combining the tree-level QCD matrix elements with the LO par-
ton shower. The recent interesting developments include MEPS@NLO —
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a technique of combining next-to-leading order parton-level calculations of
varying jet multiplicity and parton showers within the SHERPA project [11],
the GENEVA project [12] which combines higher-order resummation of large
Sudakov logarithms with next-to-leading order matrix-element corrections
and parton showers, and the MINLO concept with multi-scale improved NLO
effects [13].

A different, novel approach to the QCD parton showers has been pro-
posed within the KRKMC project [14–16]. It aims at including the NLO
corrections in both the hard process and ladder in a fully exclusive way.
It is based on the collinear factorization theorem [17, 18] but requires its
reformulation in a fully exclusive way, recalculation of the evolution ker-
nels, construction of the kinematic mappings and designing of an efficient
reweighting procedure. Some of these goals have already been achieved. In
particular, the non-singlet real emission kernels have been recalculated and
the structure of their singularities has been studied. This task has to be con-
tinued to the virtual non-singlet contributions as well as to the singlet case.
The experience shows that it is essential to automatize these calculations.

To this end, we develop a software package, named Axiloop, written
in Wolfram Mathematica. The calculations are done in the axial gauge. In
this gauge, thanks to the internal cancellations, the factorization theorem
has a remarkably simple form based on two-particle-irreducible objects. On
the other hand, the axial gauge generates unphysical, spurious, singularities
which complicate the analytical structure of expressions and make this gauge
unpopular in actual calculations. We follow the methodology of the original
paper [18] further developed in [19, 20]. The developed Axiloop package
will provide various intermediate formulae not available in the literature, for
all the non-singlet and singlet kernels and selected hard processes.

2. Calculation technique

Let us begin by discussing some aspects of the splitting functions calcu-
lation method [18, 20]. Though our intention is to calculate a complete set
of NLO splitting functions, in this paper we consider only non-singlet virtual
contributions, see Fig. 1. Despite of such a limitation, described technique
will be appropriate for the calculation of remain topologies as well.

As a master formula, we use a definition of the parton density from [18,
Eq. 2.27d]

Γ̂

(
x, αs,

1

ε

)
= δ(1− x) + PP

∫
dmk

(2π)m
δ

(
x− k ·n

p·n

)[
/n

4 p·n
K

1− PK /p

]
,

(2.1)
where (a) p is the incoming quark’s momentum; (b) q = p−k is a momentum
of the outgoing gluon; (c) the constant vector n defines a gauge condition for
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Fig. 1. A general form of the 2PI kernel for the NLO non-singlet virtual splitting
functions.

the light-cone gauge, i.e. n2 = 0; (d) the dimensional regulator ε regulates
ultra-violet (UV) and infra-red (IR) singularities; (e) the square brackets
denote contractions of the spinor indices as defined in [18, Eq. 2.2]; and
(f) the operator PP denotes the pole part of the dmk integral.

In addition, the following expansion is assumed

K

1− PK
= K +K ⊗ (PK) +K ⊗ (PK)⊗ (PK) + . . . , (2.2)

where (a) the two-particle-irreducible (2PI) kernel K is a cut-graph ex-
pressed in terms of the Feynman rules; (b) the projector P extracts a singular
part of the kernel; and (c) the product of two kernels, e.g. K⊗(PK), denotes
a convolution in a sense of [18, Eq. 2.1].

2.1. Exclusive splitting functions

Our first step is to contract spinor indices in the integrand of Eq. (2.1),
which we define as

T̃ (NLO)(k, p, l, ε) ≡
[

/n

4 p·n
K /p

]
. (2.3)

In practice, that leads to the computation of a trace of the gamma matrices.
Since a dimensional regularization technique is used in our calculations, we
set a number of dimensions m = 4 − 2ε, as in [20]. In [18], the authors
work in m = 4 + ε dimensions. The final results are identical anyway since
analytical continuation to m = 4 + 2ε dimensions is performed after the
renormalization step.

We provide some examples of how to construct the kernels K in Sec. 3.
The reader will find more examples in papers [18, 20] or in the Axiloop
source code at the project’s web page [21].

The next step is to proceed with the calculation of the exclusive bare1

splitting functions. They are obtained by integrating expression (2.3) over
the loop momentum in m = 4− 2ε dimensions

1 Those that contain UV singularities.
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T
(NLO)
B (k, p, ε, δ) ≡

∫
dml

(2π)m
T̃ (NLO)(k, p, l, ε) . (2.4)

Such an integration introduces two kinds of singularities: the infra-red
and ultra-violet ones. They appear as single (IR, UV) or double (IR) poles
in ε during explicit calculations. In order to distinguish the origin of those
poles, we tag them with corresponding labels, i.e. εIR or εUV. We stress
that these are not new regulators, but a single one, ε, with different labels.
Technically speaking, their numerical values are equal, i.e. ε = εIR = εUV.
In addition, cancellations like 1

εIR
− 1

εUV
= 0 are not allowed, but ε

εIR
= 1 or

ε
εUV

= 1 may be used.
Another type of divergences which arise during the loop-momentum inte-

gration are spurious singularities. They are specific to the axial gauge only,
thus should be considered as unphysical. There are several approaches to
regularize this kind of singularities [20]. We use a principal value prescrip-
tion as described in [18, 20]. This prescription introduces a new regulator δ,
which appears in the final results as the I0 or I1 singular functions.

The general form of the NLO exclusive bare splitting function is as follows

T
(NLO)
B (k, p, ε, δ) = α2

s (4π)
εΓ (1 + ε)

(
k2
)−1(T kIR(x, δ) k−2ε

εIR

+
T kUV(x, δ) k

−2ε + T pUV(x, δ) p
−2ε + T qUV(x, δ) q

−2ε

εUV

+T k0 (x, δ) k
−2ε +O(ε)

)
. (2.5)

We would like to stress several important points here. Firstly, terms pro-
portional to p−2ε and q−2ε are kept only for εUV poles. In the IR limit, i.e.
p2=q2=0, they disappear and, therefore, do not contribute to the final re-
sults. Secondly, the right-hand side of Eq. (2.5) may contain double poles in
εIR, which should cancel with the corresponding real contributions. For that
reason, we ignore terms proportional to 1/εIR

2 in that expression. Lastly,
double poles are absent in the examples we discuss in this paper (see Fig. 3).

Before we continue with renormalization of expression (2.5), let us define
the NLO ultra-violet counter-term, T (NLO)

UV , as proposed in [18, 20]. At
first, we extract a pole part (residue) of (2.5) in εUV regulator. It turns
out to be proportional to the leading part, T (LO,0)

R (x), of the LO exclusive
splitting function in 4− 2ε dimensions defined as follows (see [20])

T
(LO)
R (k, p, ε) =

αs

2π

(
k2
)−1 (

T
(LO,0)
R (x)− ε T (LO,1)

R (x)
)

=
αs

2π

(
k2
)−1(1 + x2

1− x
− ε (1− x)

)
. (2.6)
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Instead of such a dependence, we require the UV counter-term to be pro-
portional to the complete, with all ε-terms preserved, T (LO)

R function (2.6).
That leads to the following definition

T
(NLO)
UV (k, p, ε, δ) ≡ α2

s (4π)
εΓ (1 + ε)

(
k2
)−1

×
T kUV(x, δ) + T pUV(x, δ) + T qUV(x, δ)

εUV

T
(LO,0)
R (x)− ε T (LO,1)

R (x)

T
(LO,0)
R (x)

. (2.7)

At this point, we are ready to discuss the central expression of this paper,
the exclusive (renormalized) splitting function, which is free of the
UV singularities and is defined as follows (note the analytical continuation
to m = 4 + 2ε dimensions)

TR(k, p, ε, δ) ≡ lim
p2, q2→0

(
(TB(k, p, ε, δ)− TUV(k, p, ε, δ))ε→−ε

)
. (2.8)

Let us see explicitly a cancellation mechanism of the UV divergences at
the next-to-leading order

T
(NLO)
B (k, p, ε, δ)− T (NLO)

UV (k, p, ε, δ) = α2
s (4π)

εΓ (1 + ε)
(
k2
)−1

×

(
−
T kUV(x, δ)

(
1− k−2ε

)
+ T pUV(x, δ)

(
1− p−2ε

)
+ T qUV(x, δ)

(
1− q−2ε

)
εUV

+
T kIR(x, δ) k

−2ε

εIR
+ T k0 (x, δ) k

−2ε

+
(
T kUV(x, δ) + T pUV(x, δ) + T qUV(x, δ)

) T (LO,1)
R (x)

T
(LO,0)
R (x)

+O(ε)

)
. (2.9)

This expression has no UV singularities in the εUV → 0 limit since the first
term vanishes.

Finally, we need to analytically continue the above expression to m =
4 + 2ε dimensions and take the IR limit. At this point, two types of the
IR singularities are still left: (a) the poles in εIR, which contribute directly
to the inclusive splitting functions; and (b) the on-shell momenta terms,
p−2ε and q−2ε (ε > 0), which become singular in the IR limit. In order
to regularize the latter, we perform analytical continuation to m = 4 + 2ε
dimensions, that leads to the following expression
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(
T
(NLO)
B (k, p, ε, δ)− T (NLO)

UV (k, p, ε, δ)
)
ε→−ε

= α2
s (4π)

−εΓ (1− ε)
(
k2
)−1(T kUV(x, δ)

(
1− k2ε

)
− T kIR(x, δ) k2ε

ε

+
T pUV(x, δ)

(
1− p2ε

)
+ T qUV(x, δ)

(
1− q2ε

)
ε

+ T k0 (x, δ) k
2ε

+
(
T kUV(x, δ) + T pUV(x, δ) + T qUV(x, δ)

) T (LO,1)
R (x)

T
(LO,0)
R (x)

+O(ε)

)
. (2.10)

Now, we are safe to put p and q on shell, that gives us expression for the
NLO exclusive splitting function

T
(NLO)
R (k, p, ε, δ) = α2

s (4π)
−εΓ (1− ε)

(
k2
)−1

×

(
T kUV(x, δ) + T pUV(x, δ) + T qUV(x, δ)

ε
−

T kUV(x, δ) + T kIR(x, δ)

ε
k2ε

+T k0 (x, δ) k
2ε+

(
T kUV(x, δ) + T pUV(x, δ) + T qUV(x, δ)

) T (LO,1)
R (x)

T
(LO,0)
R (x)

+O(ε)

)
.

(2.11)

We stress that remaining poles in ε should be treated as IR, despite that
TUV(x, δ) terms originally come from the UV singularities.

2.2. Inclusive splitting functions

In order to cross-check the calculation technique, we compare our results
with already-known inclusive splitting functions [18, 20]. They are obtained
by integrating the exclusive splitting functions (2.11) over the final-state
momentum

Γ̂ (NLO)(x, δ) ≡ PP

∫
dmk

(2π)m
2πδ+

(
(p− k)2

)
δ

(
x− k ·n

p·n

)
T
(NLO)
R (k, p, ε, δ) ,

(2.12)
where (a) PP is the pole part operator (or residue) in the ε regulator; and
(b) the number of dimensionsm = 4+2ε. After performing these operations,
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we obtain an explicit expression for the inclusive splitting functions

Γ̂ (NLO)(x, δ) =
1

2

(αs

2π

)2((
ln(1− x) + 2

T
(LO,1)
R (x)

T
(LO,0)
R (x)

)

×
(
T kUV(x, δ) + T pUV(x, δ) + T qUV(x, δ)

)
+ T k0 (x, δ)

)
. (2.13)

3. Axiloop software package

In the previous section, we have presented some key details of the tech-
nique for calculating the NLO splitting functions. This section describes
implementation of that technique as a fully automated software package,
Axiloop, written for the Wolfram Mathematica system.

Simplifications

Axiloop

Exclusive level

Basic loop integrals

Loop−momenta integration

IR limit

Renormalization

UV counter−term

Inclusive level

Feynman rules

Trace of Gamma matrices

Integrand level

Final−state integration

Pole part extraction

Fig. 2. General structure of the Axiloop package.

The idea is to make Axiloop able to analytically perform described com-
putational steps for any NLO splitting function. Such a method has various
advantages in the calculation process comparing to the on-paper approach.
The most valuable one is the ability to modify the computational technique
itself in order to obtain splitting functions in modified prescriptions. For
example, the need of having such a modified prescription could be seen by
looking at the expression for the exclusive splitting function (2.11). Being
defined in 4+2ε dimensions makes it impossible to be used in parton shower
Monte Carlo simulations in 4 dimensions. For that purpose, one needs to
modify the prescription [18].

Axiloop is designed to automate calculations as much as possible. In
particular, it means that it is enough to provide just a product of Feynman
rules, as written in (3.1)–(3.2), and all final expressions are calculated auto-
matically. Those are: (a) the integrand (2.3); (b) the exclusive bare splitting
function (2.4); (c) the ultra-violet counter-term (2.7); (d) the exclusive split-
ting function (2.8); and (e) the inclusive splitting function (2.12).
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Let us demonstrate what the calculations described in the previous sec-
tion look like in Axiloop package. For that purpose, we choose two NLO
kernels that contribute to the C2

F color structure (Fig. 3).

Fig. 3. NLO kernels (c) and (e) contributing to the C2
F color structure, see

Eqs. (3.1)–(3.2).

3.1. Integrand level

In Axiloop a set of high-level routines is provided for user’s disposition,
which are used to describe input information and to produce final results:

• FP, FV, GP, and GV are used to describe a topology of the calculated
splitting function. They represent a set of Feynman rules in a light-
cone gauge. In particular, FV and GV represent fermion and gluon ver-
texes, while FP and GP are fermion and gluon propagators, respectively.
The suffix x, like in GPx, indicates that the corresponding propagator
is crossed by a cut line, thus it is on-shell.

• SplittingFunction calculates various expressions for the splitting
functions. It needs a description of the kernel to be provided as an
input in terms of the above functions representing the Feynman rules.

Let us write down the explicit expressions for the NLO kernels depicted in
Fig. 3 in form they are put into the SplittingFunction routine

Tc =
/n

4 p·n
FP(k) FVi1 FP(l − k) FVµ FP(l − p) FVi2

× GPi1i2(l) FPx(p) FV
ν FP(k) GPxµν(p− k) , (3.1)

Te =
/n

4 p·n
FP(k) FVi1 FP(l − k) FVi2 FP(k) FVµ

× GPi1i2(l) FPx(p) FV
ν FP(k) GPxµν(p− k) . (3.2)

By analogy, the user may write down input expressions for other kernels.
The point is that further computation happens in a completely automated
way, so that no user intervention is needed.
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3.2. Exclusive splitting functions

The most difficult task in calculating exclusive quantities is the loop-
momenta integration. The expressions in the form (3.1)–(3.2) are not suit-
able to be directly integrated over the loop-momenta. For that reason, we
perform a series of simplifications on the unintegrated expression; only after
that we perform loop-momenta integrals. The simplifications are based on
(a) the Passarino–Veltman rules; (b) kinematic rules; (c) on-shell rules; and
(d) translation rules. Such rules allow us to express the incoming expression
as a linear combination of a known set of integrals which are substituted
later on.

After the loop-momenta integration, the UV counter-term and the ex-
clusive splitting function are calculated as described in Sec. 2.1. In Table I,
we show the form factors which define the exclusive and inclusive splitting
functions (2.11) and (2.13) for the topologies (c) and (e) depicted in Fig. 3.

TABLE I

Form factors for the (c) and (e) topologies.

T k
UV(x, δ) T p

UV T q
UV T k

IR T k
0

Topology (c)
1

1−x 1 + 3x− x2 x2 2− 3x+ 3x2 2− 3x+ 4x2 4 + 5x+ 5x2

1+x2

1−x lnx −3 0 1 1 0
1+x2

1−x I0 −3 −1 0 −1 0
(1− x) I0 0 0 0 0 4
1+x2

1−x I0 lnx 0 0 0 0 −4
1+x2

1−x I1 0 0 0 0 4
(1− x) lnx 0 0 0 0 2
1+x2

1−x ln2 x 0 0 0 0 −2
1+x2

1−x Li2(1− x) 0 0 0 0 −2
1+x2

1−x Li2(1) 0 0 0 0 −4
Topology (e)

1
1−x −3(1 + x2) 0 0 0 −4− 6x− 4x2

1+x2

1−x lnx 4 0 0 0 0
1+x2

1−x I0 4 0 0 0 0
1+x2

1−x I1 0 0 0 0 −4
(1− x) I0 0 0 0 0 −4
1+x2

1−x I0 lnx 0 0 0 0 4
(1− x) lnx 0 0 0 0 −4
1+x2

1−x ln2 x 0 0 0 0 2
1+x2

1−x Li2(1) 0 0 0 0 4
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Let us notice the interesting relation between the terms aroused from
the IR and UV phase-space regions for the diagrams depicted in Fig. 3

T pUV(x, δ) + T qUV(x, δ)− T
k
IR(x, δ) = 0 . (3.3)

Though it seems not to be the general rule, this relation is quite important
since the sum (3.3) is proportional to the lnQ2 term in the final result for
the inclusive quantity and its vanishing guaranties that this contribution to
the result does not depend on Q2.

3.3. Inclusive splitting functions

This step is performed mainly to ensure correctness of the provided cal-
culations and of the final results. The inclusive quantities were already
calculated in [18] and [20], thus form a reliable set of tests for our calcula-
tions. We have found the full agreement with the mentioned papers. This
forms a strong test of the correctness of our algorithm.

4. Summary

We have presented some details of the ongoing work on the Axiloop
package. This package is designed for symbolic computation of the NLO
splitting functions, as described in [18]. It may also be used to perform
general-purpose tasks, e.g. the trace of the gamma matrices, the loop- and
final-momenta integration, etc. At the moment, Axiloop is able to calculate
the virtual splitting functions for the C2

F color structure. The implemen-
tation of a complete set of virtual non-singlet topologies is well advanced.
There are several possible features to be added to Axiloop in the future:
(a) the two-particle final-state integration; (b) the two-loop integration;
(c) the coefficient functions computation; (d) implementation of alterna-
tive factorization approaches; etc. The singlet topologies will be added in
the next step. We have also briefly described some aspects of the technique
for calculating the NLO splitting functions in the exclusive form, based in
the formalism of [18]. In particular, much attention has been paid to the
mechanism of renormalization of the UV singularities in virtual topologies.

The authors would like to thank S. Jadach, A. Kusina, and W. Płaczek
for discussions and comments. This work is partly supported by the Polish
National Science Centre grants DEC-2011/03/B/ST2/02632 and UMO-2012/
04/M/ST2/00240.
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