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In our previous study, we have investigated the behaviours of spinor-
type instantons in two-dimensional conformally invariant pure spinor
Thirring model in phase space. In this paper, we study the role of the
coupling constant in the evolution of the four-dimensional spinor-type in-
stantons in phase space via the Heisenberg ansatz. For this purpose, we
consider the Gursey model is a four-dimensional conformally invariant pure
spinor model with nonlinear self-coupled spinor term. The model proposed
in 1956 as a possible basis for a unitary description of elementary particles
(Heisenberg–Bohr dream). This study will also lead us to investigate the
dependence of the behaviours of spinor-type instantons in phase space on
quantum fractional spinor number as well as dimensions.
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1. Introduction

It is known that instantons are classically topological solitons [1]. In-
stantons, characterized by a zero energy-momentum tensor as well as finite
action, emerge as the solutions of coupled first order equations. In parti-
cle physics, they were described as tunnelling processes between vacua with
different topological structure, reflecting their nonperturbative nature [2].
Especially, this property of instantons plays an important role in explaining
the imprisonment of quarks in particles [3, 4].
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On the other hand, the spinor-type instanton solutions are found in
both the conformally invariant pure spinor two-dimensonal Thirring model
(Thirring Instanton) with the nonlinear

(
ψ ψ
)2 self-coupled term [5], and the

four-dimensional conformally invariant pure spinor Gursey model (Gursey

Instanton) with nonlinear
(
ψ ψ
) 4

3 self-coupled spinor term [6] by the sponta-
neous symmetry breaking of the conformal invariance of ψ spinor field, i.e.〈
0
∣∣ψ ψ∣∣ 0

〉
6= 0. It is also shown [6] that the Gursey Instanton is a special

case of a class of exact solutions of the Gursey Model (the Kortel Solu-
tions [7]) found via the Heisenberg anzats. Additionally, for the purpose of
the progress of quantum field theories, many works have been done on the
both models [8, 9].

Moreover, instantons were believed to play a vital role in various topics of
both QCD and electroweak theory. Despite their undoubted importance for
the theory of strong and electroweak interactions, experimental evidence for
instanton-induced processes is still lacking today. As it has been mentioned
in recent works [10], instanton-induced cross sections lie within measurable
range, since an attentive analysis of the Large Hadron Collider (LHC) data
in CERN might lead to the experimental confirmation of such processes.

In our previous paper [11], we investigated the stability of bifurcation
points of two-dimensional Thirring instantons by the Euclidian configuration
of the Heisenberg ansatz in phase space [12]. In this paper, we study the
Gursey model to review stability analysis in behaviours of four-dimensional
Gursey instantons and investigate the role of the coupling constant in the
evolution of four-dimensional spinor-type instantons in phase space. It will
be also remarkable to discuss similar behaviours between two-dimensional
Thirring instantons and four-dimensional Gursey instantons to understand
the dependence of the behaviours of spinor-type instantons in phase space
on quantum fractional spinor number as well as dimensions.

2. The role of the Heisenberg ansatz in the Gursey wave equation

The Gursey model is four-dimensional conformally invariant pure spinor
model. A direct proof of the conform-invariance of the Gursey wave equa-
tion was shown in Ref. [13]. The wave equation of the pure spinor Gursey
model [13] with the positive coupling constant g is given as

i γµ∂µ ψ + g
(
ψ ψ

) 1
3 ψ = 0 , (1)

where the spinor field ψ has 3
2 scale dimension. Since we want to discuss the

behaviours of its instanton-type solutions, we follow to well known extended
idea for the spinor-type instanton solutions first time given by Akdeniz and
Smailagic [5].
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In Ref. [5], the
(
ψ ψ
)
of the spinor-type instanton solutions are also re-

lated to spontaneous symmetry breaking of the full conformal group and
(ψ ψ) are then characterized by their being invariant under the transforma-
tions of a special subgroup [14] which, in turn, reflects the final symmetry
properties of the ground state of the system as [5]

Rµ =
1

2

(
aPµ +

1

a
Dµ

)
, (2)

where

Rµ
(
ψ ψ
)

=
i

a

[
a2 − x2

2
∂µ + (x∂ + 2d)xµ

] (
ψ ψ
)

= 0 , (3)

and a is a parameter with the dimensions of a length, Pµ is momentum oper-
ator and Dµ is a conformal scale invariant operator in the four-dimensional
Euclidean space-time. Then, one finds ψ ψ = ± a

g(a2+x2)
as a solution which

is related with the special case (instanton) [5] of Euclidian configuration of
the Heisenberg ansatz [12]

ψ = [i xµγµ χ (s) + ϕ(s)] c , (4)

where c is an arbitrary spinor constatnt, and χ(s) and ϕ(s) are real functions
of s = x2µ = r2 + t2 in the Euclidean space-time, i.e. r2 = x21 + x22 + x23.
Inserting Eq. (4) into Eq. (1) with

i γµ∂µ ψ =

[
−4χ(s)− 2s

dχ(s)

ds
+ 2ixµγµ

dϕ(s)

ds

]
c̄c (5)

and (
ψ ψ
) 1

3 =
(
sχ(s)2 + ϕ(s)2

)
(c̄c)

1
3 , (6)

one can obtain the following nonlinear differential equation system from
Eqs. (5) and (6)

4χ(s) + 2s
dχ(s)

ds
− g(c̄c)

1
3
[
s χ2(s) + ϕ2(s)

] 1
3 ϕ(s) = 0 , (7a)

2
dϕ(s)

ds
+ g(c̄c)

1
3
[
s χ2(s) + ϕ2(s)

] 1
3 χ(s) = 0 . (7b)

Equations (7a) and (7b) turn into the following nonlinear differential equa-
tions for g(c̄c)

1
3 = α
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4χ(s) + 2s
dχ(s)

ds
− α

[
s χ2(s) + ϕ2(s)

] 1
3 ϕ(s) = 0 , (8a)

2
dϕ(s)

ds
+ α

[
s χ2(s) + ϕ2(s)

] 1
3 χ(s) = 0 . (8b)

By the transformations given in Ref. [7], χ = As−σF (z), ϕ = B s−τG(z),
and z = ln s with σ = τ + 1

2 , τ = 3
4 , and A

2 = B2, we achieve the dimen-
sionless form of the nonlinear differential equation system (8) as

2
dF

dz
+

3

2
F − α(AB)

1
3
[
F 2 +G2

] 1
3 G = 0 , (9a)

2
dG

dz
− 3

2
G+ α(AB)

1
3
[
F 2 +G2

] 1
3 F = 0 , (9b)

where F and G are dimensionless functions of z, A and B are constants.
Long time ago, a class of exact solutions of this nonlinear equation system
in the elliptic integration form was found by Kortel [7].

3. Stability analysis of the Gursey instantons

In order to find the Gursey instanton configuration in dimensionless
Eqs. (9a) and (9b), we have to consider α(AB)

1
3 = 1 [6]

2
dF

dz
+

3

2
F −

[
F 2 +G2

] 1
3 G = 0 , (10a)

2
dG

dz
− 3

2
G+

[
F 2 +G2

] 1
3 F = 0 . (10b)

The fixed points of the nonlinear differential equations system (10) are
as follows

F = G = 0, ±3
√

3

4
.

The stability of the fixed points
(
−3
√
3

4 ,−3
√
3

4

)
, (0,0),

(
3
√
3

4 , 3
√
3

4

)
in

Eqs. (10a) and (10b) can be investigated by their fluctuations in the equa-
tions. Differentiating gives
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F ′′ = −3

4
F ′ +

1

2
α
[
F 2 +G2

] 1
3 G′ +

αG [2FF ′ + 2GG′]

6[F 2 +G2]
2
3

, (11a)

G′′ =
3

4
G′ − 1

2
α
[
F 2 +G2

] 1
3 F ′ +

αF [2FF ′ + 2GG′]

6[F 2 +G2]
2
3

(11b)

which can be written as the matrix form(
F ′′

G′′

)

=

 −3
4 + αFG

3[F 2+G2]
2
3

αG2

3[F 2+G2]
2
3

+ 1
2α(F 2 +G2)

1
3

− αF 2

3[F 2+G2]
2
3
− 1

2α(F 2 +G2)
1
3

3
4 −

αFG

3[F 2+G2]
2
3

(F ′
G′

)
.

(12)

The system has a singularity point at (0,0). As it is known, eigenvalues
can be used to determine whether a fixed point is stable or unstable. If we
examine the stability of the

(
−3
√
3

4 ,−3
√
3

4

)
and

(
3
√
3

4 , 3
√
3

4

)
points,

λ± 3
√
3

4
,± 3

√
3

4

= ± i
√

3

2

is found. So equilibrium points have pure imaginary eigenvalues, we can say
that the characterization of

(
±3
√
3

4 ±
3
√
3

4

)
fixed points is elliptic. The el-

liptic fixed point corresponds to a stable circular orbit around the fix points.
Moreover, we can find all fixed points of the Gursey wave equation de-

pend on α(AB)
1
3 values. The fixed points are found, generally,± 3

√
3
2

8
[
α (AB)

1
3

] 3
2

,±
3
√

3
2

8
[
α(AB)

1
3

] 3
2

 .

For this values,

λ± = ±1

4

√√√√9− 16α(AB)
1
3FG

(F 2 +G2)
2
3

− 80

3
α2(AB)

2
3 (F 2 +G2)

2
3 (13)

is found. For α(AB)
1
3 > 0, we find always unreal eigenvalues. So Gursey

instantons exhibit stability behaviours around the fixed points, as it can be
seen in Figs. 1, 2, and 3.
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Fig. 1. Duffing-type stabile characterization of Gursey instantons for α(AB)
1
3 = 1

in the phase space; the equilibrium points are
(
− 3

√
3

4 ,− 3
√
3

4

)
and

(
3
√
3

4 , 3
√
3

4

)
.
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Fig. 2. Duffing-type stabile characterization of Gursey instantons for α(AB)
1
3 = 1.2

in the phase space; the equilibrium points are
(
− 5
√

5
2

8 ,− 5
√

5
2

8

)
and

(
5
√

5
2

8 ,
5
√

5
2

8

)
.



The Behaviours of Gursey Instantons in Phase Space 1843

-4 -2 2 4

x

-4

-2

2

4

y

Fig. 3. Duffing-type stabile characterization of Gursey instantons for α(AB)
1
3 = 0.7

in the phase space; the equilibrium points are
(
− 15
√

15
14

7 ,− 15
√

15
14

7

)
and(

15
√

15
14

7 ,
15
√

15
14

7

)
.

4. The behaviours of the Gursey instantons in phase space

If one carefully examines space parameter of the model, it will be un-
derstood that there is no difference for the properties of dynamical be-
haviours of the Gursey instantons in the phase space. Therefore, we par-
ticularly consider parameters which are analytically related: The dynamics
behaviour of the Gursey instantons in Fig. 1 also shows that the equilib-
rium points

(
−3
√
3

4 ,−3
√
3

4

)
and

(
3
√
3

4 , 3
√
3

4

)
fixed points have, as expected,

Duffing-type stability characterization. One can also show that this result
does not depend on whether the coupling constant changes. For example,

the equilibrium points

(
−

5
√

5
2

8 ,−
5
√

5
2

8

)
and

(
5
√

5
2

8 ,
5
√

5
2

8

)
fixed point for

α(AB)
1
3 = 1.2 in Fig. 2, and equilibrium points

(
−

15
√

15
14

7 ,−
15

√
15
14

7

)
and(

15
√

15
14

7 ,
15

√
15
14

7

)
fixed point for α(AB)

1
3 = 0.7 in Fig. 3 are also stable with

Duffing-type stability characterization in the phase space.
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5. Conclusion

In this paper, we investigate the role of the coupling constant in the
evolution of four-dimensional spinor-type instantons in the phase space via
the Heisenberg ansatz and the characterization of equilibrium points of
Gursey instantons. We show that they exhibit stability behaviours around
the

(
−3
√
3

4 ,−3
√
3

4

)
and

(
3
√
3

4 , 3
√
3

4

)
equilibrium points. As it is realized in

Figs. 1, 2, and 3, this stability of the behaviours of the Gursey instantons has
unforced Duffing oscillator character stability behaviours with no coupling
constant dependence.

Fig. 4. Dimensionless behaviours of the Gursey and the Thirring instantons in the
phase space.
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It is remarkable that, as seen from Fig. 4, Duffing-type stabile character-
ization of the four-dimensional Gursey instantons is similar to Duffing-type
stabile characterization of the two-dimensional Thirring instantons in phase
space [11]. Both Gursey and Thirring instantons exhibit stability behaviours
near fixed points for positive coupling constants in these models.

The above results can be interestingly concluded that the behaviours
of spinor-type instantons in phase space are not dependent on the quan-
tum fractional spinor number as well as dimensions. These results also cor-
roborate the behaviours of spinor-type instantons as the quantum vacuum
awareness of the all fractional spinor-type particles [11]. This approch also
leads to define fractional spinor-type zero size instantons [15] in quantum
field theory.
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