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The transition network for RR-increments is a directed and weighted
graph, where the vertices represent RR-increments and the edges corre-
spond to subsequent increments. We show that based on the transition
matrix of this network, the entropy of heart rhythm can be calculated. We
compare the entropy of the distributions of eigenvalues of the transition
matrix for heart transplant patients and for healthy young subjects. We
show the regulatory effect of the autonomic nervous system on the entropy
values and evaluate the effects of the progression of graft reinnervation on
the entropy values.
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1. Introduction

It is generally believed that RR-intervals — time intervals between heart
contractions — carry information about the cardiac control system, mainly
driven by the autonomic nervous system [1]. Heart transplantation (HTX)
interrupts the direct autonomic control over the beating of the heart. As a
consequence, heart rate variability in patients after HTX is different from
that of healthy people.

The decision to transplant the heart is taken when the patient’s life is
in danger, and HTX is generally seen as a life saving operation. In many
cases, already in a short time after the surgery, it is amazing to see how the
organism of the patient recovers [2].

(1771)
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Therefore, when we investigate signals recorded from the same patient
with the passing of time after HTX, we have a unique opportunity to observe
the heart at work when the direct control over healthy variability is removed
and subsequently recovers, at least partially.

RR-signals, like any time series, can be mapped into a directed graph
where the vertices represent signal values and the edges are links between
consecutive values in a signal [3, 4]. A variety of measures have been pro-
posed to determine the relative importance of a single vertex within the
graph and to quantify the topology of vertex connectivity [5, 6]. Examples
of such measures are given by the centrality degree defined as the degree of a
vertex or the transition matrix which introduces the probabilistic description
of the dynamical aspect of the network topology. The considerable success
of the network approach motivated us to explore these ideas to identify pat-
terns in RR-signals of people after HTX, and present them in a way which
could be useful in clinical practice to observe the progress of reinnervation
and the restoration of the function of autonomic regulation.

This paper is a continuation of our earlier investigations (see [7–10]).
Previously, we studied the emergence of complexity in transition networks
constructed from RR-series [7, 8], and from increments between subsequent
RR-intervals [9, 10]. In [9] we further studied networks representing fluc-
tuations in the heart RR-intervals, and not the actual intervals. There, we
investigated disintegration of such networks by measuring changes in the
volume of the network remaining after subsequent removal of vertices which
described events with a given increasing probability. Then, in [10] we pro-
posed assessment of the complexity of heart RR-interval variability by means
of calculating the entropy of the transition matrices of those networks.

In the following, we investigate properties of the dynamical topological
description of time series using the transition matrix approach to cardiac
signals obtained from healthy young people and people after HTX. These
results are then compared with transition networks obtained from Fourier
phase surrogates to measure the influence of the higher order, non-linear
correlations in the data. In order to assess the complexity of the signals
studied, we formulate the description of the topology using entropy. We ob-
serve that the entropy measure applied captures the fine change in non-linear
topological properties of the time series transition matrix. In particular, we
reveal a systematic change in complexity occurring during graft adaptation
and the reinnervation progress in HTX subjects.
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2. Data acquisition

2.1. Groups of signals studied

We study two groups of signals: Young and HTX. The Young group
consists of 41 recordings (21 women and 20 men, age 19–34) which were
obtained from healthy young people — students of Gdańsk Medical Univer-
sity. The HTX group is made of 25 recordings taken from 16 patients after
HTX. The information about the age and sex of each patient is given in
Fig. 7. All the patients had had the HTX at least 12 months previously and
qualified as healthy. Some recordings were taken from the same patients but
at different periods after the surgery which allows the study of the progress
in graft adaptation. Among the 25 signals from the HTX group, five of
the signals are special because they come from patients who suffered from
graft rejection not less than five months later or not less than six months
previously.

All the subjects underwent full twenty-four-hour Holter monitoring, dur-
ing a normal sleep–wake rhythm. The Holter recordings were analyzed by
Del Mar Reynolds Impresario software and screened for premature, supraven-
tricular and ventricular beats, missed beats and pauses. Finally, the signals
were manually surveyed and annotated.

2.2. Signal preprocessing

Our Holter equipment provided values with 128 Hz sampling frequency.
Therefore, the RR-intervals are given with 7.8125 msec. resolution, which
can be approximated by ∆0 = 8 msec. For this reason, RR-interval signals
take values which are multiples of 8.

The nocturnal period of the circadian rhythm is known to be a dynamic
state which is characterized by rapid fluctuations in the activity of the auto-
nomic nervous system controlling the coronary artery, systemic blood pres-
sure, and heart rate [11]. As a consequence, the heart rate variability is
typically higher during the night-time. Moreover, the nocturnal regulation
of the heart contractions is evidenced as the most free from influences of
types other than the autonomic nervous system regulation. Based on these
facts, our analysis was focused on sleeping hours, namely the RR-intervals
were extracted from 24:00 to 04:00 in the case of signals from the Young
group and from 22:00 to 06:00 in the case of signals from the HTX group.

To ensure well founded statistics for the analysis, the series were con-
structed from a total of 15 000 normal-to-normal RR-intervals. We consid-
ered continuous data segments consisting of at least 500 consecutive normal-
to-normal heart contractions, excluding ectopic beats and any other data
corruption or noise. On average a signal from the Young group consisted of
5.17 ± 1.05(95% C.I.) such segments of continuous RR-interval data, while
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a signal from the HTX group contained 7.50 ± 1.56(95% C.I.) segments,
see Fig. 1 for a more detailed description of the data segment statistics. In
the analysis, we omitted any information from neighbouring samples across
adjacent data segments.

Fig. 1. Histogram of events of the number of ECG recording segments from which
a given signal was constructed.

RR-increments, i.e., differences between subsequent RR-intervals:
∆RR(t) = RR(t) − RR(t − 1), are also multiples of 8, with values limited
to 0,±8,±16,±24, . . . Here negative values of RR-increments correspond
to events of accelerations, while positive values denote decelerations, and 0
describes a so-called no-change event.

We applied a standard binning procedure, using bins based on multiples
of the signal resolution, namely ∆ = k∆0 for k = 1, 2, . . . This decreases
the number of different values appearing in a sequence of RR-intervals, and,
in consequence, decreases the number of distinct vertices in the transition
network obtained for RR-intervals.

In addition, we performed the same analysis on artificially modified car-
diac signals, which we refer to as surrogate signals, obtained by randomiza-
tion of phases of the Fourier transform of the cardiac RR-intervals (note, not
RR-increments). Such surrogate signals preserve the linear correlations of
the cardiac signals [12] and therefore they can be used to detect nonlinearity
in the original data. The surrogate signals were prepared with the help of
the TISEAN software [13]. For each cardiac signal we prepared ten surrogate
signals. Each signal was analyzed independently and then the group average
was calculated.
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3. Transition network for RR-increments

Let b = {b0, b2, . . . , bi, . . . , bN} be a sequence of RR-intervals binned
with some ∆. The subscript i refers to the time order. Further, let c =
{c1, c2, . . . , ci, . . . , cN} be a sequence of the corresponding RR-increments,
i.e., ci = bi − bi−1. Since the number of different values is finite, let
us denote it as K. We can order the values from the smallest Cmin =
mini{c1, c2, . . . cN} to the greatest Cmax = maxi{c1, c2, . . . cN}, and use
them as labels for the vertices of the network:

Cmin = C(1) , C(2) = C(1) +∆ , . . . ,

Cmax = C(K) = C(1) + (K − 1)∆ . (1)

A directed edge (C(I), C(J)) between two vertices C(I) and C(J) is drawn,
if C(I) and C(J) represent a pair of consecutive events in a sequence c,
namely (ci = C(I), ci+1 = C(J)). If a given pair occurs many times in c,
then the weight of the corresponding edge increases to reflect the counts of
occurrences. The loops, if they appear, denote consecutive decelerations or
accelerations of the same size. The loop accompanying vertex 0 demonstrates
the presence of two consecutive no-change events.

We construct a matrix of transitions between the states represented by
the network. The so-called ‘transition matrix’ T of a K ×K size is defined
as follows. Each element T(I)(J) = T (C(J)|C(I)) equals:

1. the weight of the outgoing edge from vertex C(I) to vertex C(J), nor-
malized by the total weight of the vertex C(I), or

2. zero if there is no edge between these vertices.

The resulting matrix T describes the probability of transitions between
two states given that the C(I) state occurs. The edges follow a natural order
in the time series and each outgoing edge is accompanied by an incoming
edge. As a consequence, the total transition probability of the outgoing
edges is equal to the sum the transition probabilities of the incoming edges,
and matches a given RR-increment occurrence of a signal.

In other words, the transition matrix describes a Markov walk on a
network where a walker moves from the vertex C(I) to C(J) with a probability
T(I)(J). Consequently, matrix T is right stochastic.

The role of vertices in the network can be inferred from the stationary
distribution arising from the transition matrix T . The stationary state µ =
{µ(I) : (I) = Cmin, . . . , Cmax} is given as the eigenvector of the transition
matrix T corresponding to eigenvalue 1. Consequently, we can calculate the
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entropy as follows

S = −
K∑

(I)=1

µ(I)

K∑
(J)=1

T(I)(J) log T(I)(J) . (2)

4. Results

Directly after the HTX, the RR-signals of the patients are very plain.
The absence of any influence of the autonomic nervous system results in very
low variability ofRR intervals. As a result of this, the network representation
of RR-increments consists of considerably fewer vertices than for a typical
healthy person. We illustrate this by presenting the values of the mean
transition matrices found for the Young subjects and HTX patients. These
mean matrices are found after averaging transition matrices obtained for the
individual patients from each of the three groups considered: Young, HTX
and Surrogates. In Fig. 2 we show them as density plots.

Fig. 2. Density plots for mean transition matrices obtained from RR-increments for
the main cardiac groups: Young and HTX at the signal resolution, i.e., ∆ = 8 msec.
Note the difference between the scales used in the plots.
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From Fig. 2 we see that the network constructed from signals of HTX
patients is concentrated around the transition from a no-change event to the
smallest increments possible, namely 0,±8,±16. The plots obtained from
surrogate signals indicate that nonlinear effects are related to events distant
from the event of the no-change-to-no-change type.

In Fig. 3 we show two networks constructed from the means of events
obtained from signals of HTX recipients and Young people. Events which
occur with a probability of less than 1% are omitted. Both networks consist
of 7 events only. Each vertex is connected to all others. The probability of
the particular transition is represented by the edge width. Both networks
appear to have a similar topology. The most popular transition is (0; 0),
namely transition from no-change to no-change. However, each network
describes events at a different scale.

Fig. 3. (Colour online) The mean networks for the Young (left) and HTX (right)
groups with counts for the important transitions in per cents. Veritices are arranged
in a circle and ordered clockwise according to the label value. Note that the HTX
signals are binned at ∆ = 8 msec., while the Young group signals are binned of
∆ = 64 msec. The edge width mimics counts for the given transitions. The edge
label indicates the probability that a given pair of increments occur subsequently
in a signal. The following colour scheme is applied for edges to reveal changes
between subsequent transitions: no-change: violet loops; ∆-change: green edges for
nearest neighbours of the circle; 2∆-change: blue edges for next-nearest neighbors;
3∆-change: red edges for next-nest-neighbors; 4∆-change: yellow egdes if vertices
representing transitions are separated by three other vertices and other cases are
represented by black edges. The diagrams were prepared with the use of Pajek [14].
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In Fig. 4 we specify the differences in the dynamics between HTX pa-
tients and Young people by showing the density plots of differences between
the corresponding transition matrices. These differences are shown when the
same scale to quantify events is applied to both groups, and when the events
occurring in the Young group are represented at a scale 8 times greater than
events in signals from the HTX group. The networks in Fig. 3 likewise reveal
differences using these scales. In particular, we see that:

— THTX(0|0) ≈ TYoung(0|0) when 0 denotes a change within less than
8 msec in the case of HTX patients and within less than 64 msec in
the case of Young people;

— THTX((n ∗ 8)|(−m ∗ 8)) > TYoung((n ∗ 64)|(−m ∗ 64)) and THTX((−n ∗
8)|(m ∗ 8)) > TYoung((−n ∗ 64)|(m ∗ 64)) for n < m : 1, 2, 3, 4 which
quantifies the following transitions: (i) after a given acceleration, the
correcting deceleration occurs, or (ii) after a given deceleration, the
acceleration occurs;

Fig. 4. (Colour online) Density plots of differences between the considered transi-
tion matrices when both matrices are represented with the same bin, bin = 8 [msec]
(left) and when the bin for the Young group is 8 times greater (right). The regions
close to lines labeled 0.0 (plotted in green) represent transitions which occur with
a similar probability in both groups. Lines with positive labels mark regions of
transitions which are more popular in signals of HTX patients. These regions are
filled by the yellow and red colours. Lines with negative labels delimit regions
which are specific to signals from of Young people. They are drawn in blue. Note
that the labels used in the right figure are for HTX, and in the case of the Young,
they have to be multiplied by 8.
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— THTX((−n∗8)|(−m∗8)) < TYoung((−n∗64)|(−m∗64)) and THTX((n∗
8)|(m ∗ 8)) < TYoung((n ∗ 64)|(m ∗ 64)) for n < m : 1, 2, 3, 4, i.e., two
accelerations, and two decelerations occur in a sequence.

Now, let us discuss the differences between the types of signals: cardiac
versus surrogate by using the properties of stationary measures arising from
the mean transition matrices. In Fig. 5 stationary measures obtained for
the Young and HTX groups are shown, together with stationary measures
of their respective Surrogates.

Fig. 5. Plots of eigenvectors for the eigenvalue 1 of the mean transition matrices
obtained for cardiac and surrogates signals when data is binned with different bin
sizes ∆ (log-plots), and for the Young group (left panel) and the HTX group (right
panel.)

One should note that the binning procedure does not change the impor-
tance of vertices. For each group studied, the main measure is associated
with no-change transitions. But while in the case of the Young group the
probability of the no-change-to-no-change event takes values from 0.08, for
∆ = 8, to 0.47 for ∆ = 80, for signals from the HTX group we obtain 0.41
and 0.92, respectively. The Surrogate data provide similar characteristics for
the main transitions. However, one can see discrepancies when decelerations
are large, namely for RR-increment > 150 msec.
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The entropy values at the maximal resolution ∆0 are as follows:

Cardiac Surrogates

Young 1.46 1.49
HTX 0.58 0.63

and, as expected, they decrease with the increasing bin, as is shown in Fig. 6.
However, in each other bin, the entropy estimated from the surrogates is still
larger than the entropy obtained from the cardiac signals.

It should be noted that the values presented are slightly different from
those in [10]. Here, the entropy is calculated from the mean transition matrix
while previously the entropy was estimated as the mean of the entropies
calculated for each individual signal.

Fig. 6. Entropy calculated from the mean transition matrices obtained for the
Young (left) and HTX (right) groups when individual signals are binned with dif-
ferent bin size.

The small relative difference between entropies found for cardiac and
surrogate signals of the Young group lead to the observation that changes
in RR-intervals follow linear stochastic dynamics.

This relative difference is greater in the case of HTX signals. Hence,
we can hypothesize that the rhythm of the heart in patients after a HTX
is driven by nonlinear interactions to a greater degree than in healthy in-
dividuals. Furthermore, we can attribute the stochastic linearity of healthy
dynamics to the direct influence of the autonomic nervous system.

Finally, let us observe whether the entropy changes as time passes after
the surgery. In Fig. 7 we show the entropy calculated for each individual
HTX patient with indications of the time after HTX. The entropy increases
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in most cases, consistently with the length of time after the heart transplan-
tation, as is represented in the right panel of Fig. 7, in spite of considerable
variability. This, in our opinion, reflects the progression of restoration of
the dynamics in the heart rate variability of the patients as a result of in-
creased cardiac control by the autonomic system. Moreover, it can also be
observe that the entropy calculated from signals of three of the five patients
in whom the graft rejection episode had been/was to be observed are far
from the mean value for the group.

Fig. 7. Entropy calculated for 25 signals from 16 patients in the HTX group. Left:
Symbolic patient codes are listed along the horizontal axis. In brackets, the sex
and the age at the time of surgery are given. Codes starting with a ∗ mark pa-
tients qualified as healthy, but for whom the rejection episode had been/was to be
recorded. For a given patient, the values of entropy are marked by indicating num-
bers of months after the surgery. Right: The same set of entropy values displayed
with respect to the mean value obtained for the HTX group. The letters ‘h’ and ‘r’
in the labels are used to code the clinical information about whether the symptoms
for rejection of the graft would develop ‘r’ or not ‘h’ in the future/had developed
in the patient’s history. The numbers in the labels correspond to the time after
the surgery (in months). The postfixes identify the patients as they are identified
in the left panel.

The possibility of a reliable evaluation of the restoration of the dynamics
of cardiac variability would be of paramount significance in the evaluation
of graft adaptation and the general restoration of a patient’s circulatory
dynamics. However, the sample size in our study is much too small to
permit the formulation of any definitive conclusions.
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5. Conclusions
HTX is a costly and extreme life saving intervention which restores the

blood circulatory function, but depraves the system of the patient of the
autonomic control and the related dynamical responsiveness of the heart. In
evaluating the progression of the graft adaptation into the system and partial
restoration of the autonomic regulation through reinnervation, the evalua-
tion of the dynamical properties of the heart rate variability is considered to
provide valuable insight. We have verified that entropy values capture the
complex dynamical properties of the heart rate variability dynamics and may
in the future help to evaluate the progression of the reinnervation process
and related restoration of the HRV dynamics.

We thank the Polish National Science Centre for financial support:
UMO:2012/06/M/ST2/00480.
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