ERRATUM

(Received November 7, 2014)

M.D. Pollock

Maximally Symmetric Superstring Vacua
Acta Phys. Pol. B 40, 2689 (2009)

The following are corrections to errors in the printed paper:
Page Line
Should read
$269421 \quad \Lambda_{\text {eff }}=0, \quad\{18 /[337 \zeta(3)+1 / 2]\}^{1 / 3} A_{\mathrm{r}}^{-1} \kappa^{-2}$,
$269512 \quad 4 B \kappa^{2} \Lambda_{\text {eff }}=4\{18 /[337 \zeta(3)+1 / 2]\}^{1 / 3} \tilde{B} B_{\mathrm{r}}^{-2}$

$$
\begin{equation*}
=0.629\left(\frac{\tilde{B}}{4}\right)\left(\frac{3}{B_{\mathrm{r}}}\right)^{2} \tag{33}
\end{equation*}
$$

2695 15-19 The sign of expression (37) is clearly positive, although note that we have ignored the trace anomaly.
269522 over the de Sitter space solution with non-vanishing $\Lambda_{\text {eff }}$.
$\left.\begin{array}{lc}2695 & 23-32 \\ 2696 & 1-15\end{array}\right\}$ The argument does not apply.
2697
$10 \quad \lambda_{0}^{\prime}=228 \zeta(3)+\frac{15}{16}$,
2697

$$
\begin{equation*}
11 \quad a_{0}^{\prime}=1,608 \zeta(3)+\frac{15}{4}, \tag{51}
\end{equation*}
$$

$2697 \quad 12 \quad b_{0}=2,974 \zeta(3)+\frac{25}{4}, \quad b_{2}^{\prime}=546 \zeta(3)+\frac{3}{8}$,
2697 13-14 $c_{0}=\frac{9}{14}\left[337 \zeta(3)+\frac{1}{2}\right], \quad c_{2}=2,436 \zeta(3)+6$,
$c_{3}=753 \zeta(3)+\frac{15}{4}, \quad c_{4}=\frac{123}{2} \zeta(3)+\frac{15}{16}$
$269716 \quad k_{0}=\frac{1}{5}[10,938 \zeta(3)+21], \quad k_{2}=2,613 \zeta(3)+\frac{3}{4}$, $k_{3}=507 \zeta(3)$.
2697 27-28 $\lambda_{2}^{\prime}=\frac{C_{2}}{B_{2}}-\left(\frac{K_{2}}{B_{2}}\right)^{2}=\left[\frac{203 \zeta(3)}{2}+\frac{1}{4}\right] \frac{\kappa^{4} A_{\mathrm{r}}^{3}}{B+b_{2}^{\prime} k^{2} \kappa^{4} A_{\mathrm{r}}^{3} a^{-4} / 24}$

$$
\begin{equation*}
-\left(\frac{[2,613 \zeta(3)+3 / 4] k \kappa^{4} A_{\mathrm{r}}^{3} a^{-2}}{24 B+b_{2}^{\prime} k^{2} \kappa^{4} A_{\mathrm{r}}^{3} a^{-4}}\right)^{2} \tag{58}
\end{equation*}
$$

$$
\begin{align*}
2698 \quad 2-3 & =\left[\frac{753 \zeta(3)+15 / 4}{110,592}\right] \frac{\kappa^{4} A_{\mathrm{r}}^{3}}{\left(B+b_{2}^{\prime} k^{2} \kappa^{4} A_{\mathrm{r}}^{3} a^{-4} / 24\right)^{3}} \\
& =-\frac{1,521 \zeta(3)\left[2,613 \zeta(3)+3 / 4 k^{2} \kappa^{8} A_{\mathrm{r}}^{6} a^{-4}\right.}{8\left(24 B+b_{2}^{\prime} k^{2} \kappa^{4} A_{\mathrm{r}}^{3} a^{-4}\right)^{4}} \tag{59}\\
2698 \quad 5-6 \quad & \lambda_{4}=\frac{C_{4}}{16 B_{2}^{4}}-\left(\frac{3 K_{3}}{8 B_{2}}\right)^{2} \frac{1}{B_{2}^{3}} \\
& =\left[\frac{123 \zeta(3)+15 / 8}{10,616,832}\right] \frac{\kappa^{4} A_{\mathrm{r}}^{3}}{\left(B+b_{2}^{\prime} k^{2} \kappa^{4} A_{\mathrm{r}}^{3} a^{-4} / 24\right)^{4}} \\
& =-\left(\frac{1,521 \zeta(3) k \kappa^{4} A_{\mathrm{r}}^{3} a^{-2}}{192 B+8 b_{2}^{\prime} k^{2} \kappa^{4} A_{\mathrm{r}}^{3} a^{-4}}\right)^{2} \frac{1}{\left(24 B+b_{2}^{\prime} k^{2} \kappa^{4} A_{\mathrm{r}}^{3} a^{-4}\right)^{3}} . \tag{60}
\end{align*}
$$

From Eqs. (48), (49), (50) and (54) we see that the Z_{0} are not all negative semi-definite. To order ξ^{2}, however, we have the important result that the potential (57) is positive semi-definite, being bounded from below with a minimum $\mathcal{V}(\alpha, 0)=0$ at $\xi=0$ when $\Lambda \geq 0$.
269829 the approximation of setting the $C_{n}=0$ and $k=0$, whereupon Eq. (56) reduces to the
2699 19-25 When the higher-order corrections contained in expression (65) are taken into account, however, the situation becomes more complicated. The coefficients $A_{0},-B_{0}, K_{0}$ and $-C_{0}$ of the terms $\tilde{\xi}^{2}, \tilde{\xi}^{4}, \tilde{\xi}^{6}$ and $\tilde{\xi}^{8}$, respectively, are all negative semi-definite, at least for $k \leq 0$, the dominant term $-C_{0} \tilde{\xi}^{8}$ at large $\tilde{\xi}^{2}$ being negative for all k. For $k \leq 0$ and $\tilde{\xi}^{\prime}>0$, the terms $K_{2} \tilde{\xi}^{2} \tilde{\xi}^{\prime 2}$, $K_{3} \tilde{\xi}^{\prime 3},-C_{2} \tilde{\xi}^{4} \tilde{\xi}^{\prime 2},-C_{3} \tilde{\xi}^{2} \tilde{\xi}^{\prime 3}$ and $-C_{4} \tilde{\xi}^{\prime 4}$ are also all negative semi-definite. \} The argument does not apply.

As a result, \mathcal{L}_{E} is bounded from above, remaining negative semi-definite as $\tilde{\xi} \rightarrow \infty$, when $k \leq 0$. The terms

Page Ref.

Should read

2700 [16] M.D. Pollock, Int. J. Mod. Phys. D16, 591 (2007); D23, 1492001(E) (2014).
2700 [17] M.D. Pollock, Int. J. Mod. Phys. A7, 4149 (1992); A27, 1292005(E) (2012).
2701 [21] M.D. Pollock, Int. J. Mod. Phys. D4, 305 (1995); D21, 1292002(E) (2012).
2701 [22] M.D. Pollock, Int. J. Mod. Phys. D15, 845 (2006);
D22, 1392001(E) (2013).

