ERRATUM

(Received November 7, 2014)

M.D. Pollock

Maximally Symmetric Superstring Vacua

Acta Phys. Pol. B 40, 2689 (2009)

The following are corrections to errors in the printed paper:

Page	Line	Should read	
2694	21	$\Lambda_{\rm eff} = 0, \qquad \{18/\left[337\zeta(3) + 1/2\right]\}^{1/3} A_{\rm r}^{-1} \kappa^{-2},$	(33)
2695	12	$4B\kappa^2 \Lambda_{\rm eff} = 4\left\{18/\left[337\zeta(3) + 1/2\right]\right\}^{1/3} \tilde{B}B_{\rm r}^{-2}$	
		$= 0.629 \left(rac{ ilde{B}}{4} ight) \left(rac{3}{B_{ m r}} ight)^2 ,$	(38)
2695	15 - 19	The sign of expression (37) is clearly positive,	
		although note that we have ignored the trace	
		anomaly.	
2695	22	over the de Sitter space solution with non-van-	
		ishing $\Lambda_{\rm eff}$.	
2695	23 - 32	The engineers deep not emply	
2696	1 - 15	${ m The argument does not apply.}$	
2697	10	$\lambda_0' = 228\zeta(3) + rac{15}{16} ,$	(51)
2697	11	$a_0' = 1,608\zeta(3) + \frac{15}{4},$	(52)
2697	12	$b_0 = 2,974\zeta(3) + \frac{25}{4}, \qquad b'_2 = 546\zeta(3) + \frac{3}{8},$	(53)
2697	13 - 14	$c_0 = \frac{9}{14} \left[337\zeta(3) + \frac{1}{2} \right], c_2 = 2,436\zeta(3) + 6,$	(54)
		$c_3 = 753\zeta(3) + \frac{15}{4}, \qquad c_4 = \frac{123}{2}\zeta(3) + \frac{15}{16}$	(54)
2697	16	$k_0 = \frac{1}{5} [10, 938\zeta(3) + 21], \qquad k_2 = 2, 613\zeta(3) + \frac{3}{4},$	
		$k_3 = 507\zeta(3)$.	(55)
2697	27 - 28	$\lambda_2' = \frac{C_2}{B_2} - \left(\frac{K_2}{B_2}\right)^2 = \left[\frac{203\zeta(3)}{2} + \frac{1}{4}\right] \frac{\kappa^4 A_r^3}{B + b_2' k^2 \kappa^4 A_r^3 a^{-4}/24}$	
		$-\left(\frac{[2,613\zeta(3)+3/4]k\kappa^4A_{\rm r}^3a^{-2}}{24B+b_2'k^2\kappa^4A_{\rm r}^3a^{-4}}\right)^2\;,$	(58)

Page Line

Should read

2698 2-3
$$= \left[\frac{753\zeta(3)+15/4}{110,592}\right] \frac{\kappa^4 A_r^3}{(B+b_2'k^2\kappa^4 A_r^3 a^{-4}/24)^3} = -\frac{1,521\zeta(3)[2,613\zeta(3)+3/4]k^2\kappa^8 A_r^6 a^{-4}}{8(24B+b_2'k^2\kappa^4 A_r^3 a^{-4})^4}$$
(59)

2698 5-6
$$\lambda_{4} = \frac{C_{4}}{16B_{2}^{4}} - \left(\frac{3K_{3}}{8B_{2}}\right)^{2} \frac{1}{B_{2}^{3}} = \left[\frac{123\zeta(3)+15/8}{10,616,832}\right] \frac{\kappa^{4}A_{r}^{3}}{\left(B+b_{2}'k^{2}\kappa^{4}A_{r}^{3}a^{-4}/24\right)^{4}} = -\left(\frac{1,521\zeta(3)\kappa^{4}A_{r}^{3}a^{-2}}{192B+8b_{2}'k^{2}\kappa^{4}A_{r}^{3}a^{-4}}\right)^{2} \frac{1}{\left(24B+b_{2}'k^{2}\kappa^{4}A_{r}^{3}a^{-4}\right)^{3}}.$$
 (60)

2698 16–19 From Eqs. (48), (49), (50) and (54) we see that the
$$Z_0$$

are not all negative semi-definite. To order ξ^2 , however,
we have the important result that the potential (57) is
positive semi-definite, being bounded from below with a
minimum $\mathcal{V}(\alpha, 0) = 0$ at $\xi = 0$ when $\Lambda \geq 0$.

- 2698 29 the approximation of setting the $C_n = 0$ and k = 0, whereupon Eq. (56) reduces to the
- 2699 19–25 When the higher-order corrections contained in expression (65) are taken into account, however, the situation becomes more complicated. The coefficients $A_0, -B_0, K_0$ and $-C_0$ of the terms $\tilde{\xi}^2, \tilde{\xi}^4, \tilde{\xi}^6$ and $\tilde{\xi}^8$, respectively, are all negative semi-definite, at least for $k \leq 0$, the dominant term $-C_0 \tilde{\xi}^8$ at large $\tilde{\xi}^2$ being negative for all k. For $k \leq 0$ and $\tilde{\xi}' > 0$, the terms $K_2 \tilde{\xi}^2 \tilde{\xi}'^2$, $K_3 \tilde{\xi}'^3, -C_2 \tilde{\xi}^4 \tilde{\xi}'^2, -C_3 \tilde{\xi}^2 \tilde{\xi}'^3$ and $-C_4 \tilde{\xi}'^4$ are also all negative semi-definite.
- $\begin{array}{ccc} 2699 & 26-29 \\ 2700 & 1-2 \end{array} \right\}$ The argument does not apply.
- 2700 3–5 As a result, $\mathcal{L}_{\rm E}$ is bounded from above, remaining negative semi-definite as $\tilde{\xi} \to \infty$, when $k \leq 0$. The terms
- Page Ref. Should read
 2700 [16] M.D. Pollock, Int. J. Mod. Phys. D16, 591 (2007); D23, 1492001(E) (2014).
 2700 [17] M.D. Pollock, Int. J. Mod. Phys. A7, 4149 (1992); A27, 1292005(E) (2012).
 2701 [21] M.D. Pollock, Int. J. Mod. Phys. D4, 305 (1995); D21, 1292002(E) (2012).
- 2701 [22] M.D. Pollock, Int. J. Mod. Phys. D15, 845 (2006);
 D22, 1392001(E) (2013).

2136