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Precise determination of unitary multichannel ππ scattering ampli-
tudes for D and F waves on the processes ππ → ππ, KK̄ and ηη in the
IGJPC = 0+2++ and the 1+3−− sectors have been presented, using a set
of well known once subtracted dispersion relations with imposed crossing
symmetry condition. These amplitudes were refined and re-fitted to the
dispersion relations up to 1.1 GeV, and to the experimental data in the
effective two-pion mass from the threshold to 2.7 GeV and 1.9 GeV for D
and F waves, respectively. Moreover, a satisfactory justification regarding
the controversies in the states of f2 and ρ3 mesons about their masses and
number of states that are taken into account has been presented.
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1. Introduction

To have a better understanding of strong interactions at low energies,
it is crucial to have a good knowledge of light meson spectroscopy as it
plays a significant role in decays that undergo strong interactions. Thus,
it is very important to have model-independent information on investigated
states and on their QCD nature. It can be obtained only on the basis of
the first principles (analyticity and unitarity) directly applied to analysis
of experimental data. This approach permits us to avoid introduction of
theoretical prejudice into extracted parameters of resonances [1].

Amplitudes of ππ scattering are often used incorrectly. Old parameter-
izations of the ππ scattering amplitudes for D and F waves are still used
in some calculations that significantly do not satisfy the crossing symme-
try condition and do not describe the ππ threshold region. The problem
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is the lack of correct partial wave amplitudes for D and F waves on the
processes ππ → ππ, KK̄ and ηη in the IGJPC = 0+2++ and the 1+3−−

sectors to study the f2 and ρ3 mesons, respectively. Moreover, still there are
some controversies in the states of f2 and ρ3 mesons about their masses and
number of states that are taken into account. For example, in the tensor
sector (I = 2) 0+2++ from thirteen resonance states discussed in the PDG
the eleven ones (f2(1270), f2(1430), f2(1525), f2(1600), f2(1730), f2(1810),
f2(1960), f2(2000), f2(2020), f2(2240), f2(2410)) have been confirmed in
various experiments and analyses. This investigation specifies the dominant
and the ineffective states.

In the analysis of S- and P -wave amplitudes [2] resonance poles and
zeros on the Riemann surface that were calculated from multi-channel Breit–
Wigner forms, have been used to construct the S- and P -wave amplitudes. In
contrast to the way used to calculate the S- and P -wave amplitudes, multi-
channel Breit–Wigner forms with taking into account the Blatt–Weisskopf
barrier factors given by spins of resonances [3] have been used to construct
the D- and F -wave amplitudes directly. To improve agreement of the D-
and F -wave amplitudes with the crossing symmetry, the new amplitudes
have been fitted to the dispersion relations (DR) and to the data.

2. The S-matrix formalism for N coupled channels

The N -channel S-matrix is determined on the 2N -sheeted Riemann sur-
face. The matrix elements Sab (a, b = 1, 2, . . . , N denote channels) have the
right-hand cuts along the real axis of the complex-s plane (s is the invariant
total energy squared), related to the considered channels and starting in
the channel thresholds si (i = 1, . . . , N), and the left-hand cuts related to
the crossed channels. The main model-independent part of resonance con-
tributions is given by poles and zeros on the Riemann surface. Generally,
this representation of resonances can be obtained utilizing formulas for the
analytic continuations of the matrix elements for the coupled processes to
the unphysical sheets of the Riemann surface [4].

For the combined analysis of data, the Le Couteur–Newton relations
[5–7] have been used. These relations express the S-matrix elements of all
coupled processes in terms of the Jost matrix determinant d(k1, . . . , kN ),
where the sheets of surface are numbered according to the signs of analytic
continuations of the channel momenta ki, ki = 1/2

√
s− si that is a real

analytic function with the only branch-points at ki = 0

Saa =
d(k1, . . . , ka−1,−ka, ka+1, . . . , kN )

d(k1, . . . , kN )
, (1)

SaaSbb − S2
aa =

d(k1, . . . , ka−1,−ka, ka+1, kb−1,−kb, kb+1, . . . , kN )

d(k1, . . . , kN )
. (2)
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The real analyticity implies d(s∗) = d∗(s) for all s. The d-function
is taken in the separable form d = dbgrdres. The resonance part dres is
described using the multi-channel Breit–Wigner forms. The background
part dbgr represents mainly an influence of channels which are not explicitly
included.

In the considered four-channel case, the Riemann surface is sixteen-
sheeted. The sheets II, IV, VIII, and XVI correspond to the following signs of
analytic continuations of the quantities: Im

√
s− s1, Im

√
s− s2, Im

√
s− s3,

Im
√
s− s4: −+ + +, +−+ +, + +−+ and + + +−, respectively.

3. Analysis of the D-wave amplitude in the IGJPC=0+2++ sector

In the analysis of data on the isoscalar D wave of processes ππ → ππ,
KK̄ and ηη, the channel (2π) (2π) has been considered explicitly as the
fourth channel. The resonance part dres is described using the multi-channel
Breit–Wigner forms

dres(s) =
∏
r

[
M2
r − s− i

N∑
I=1

ρ2J+1
ri Rrif

2
ri

]
, (3)

where ρri = 2ki/
√
M2
r − si and f2ri/Mr indicates to the partial width of

a resonance with mass Mr and Rri(s,Mr, si, rri) are the Blatt–Weisskopf
barrier factors with si the channel threshold and rri a radius of the i-channel
decay of the state r. The Blatt–Weisskopf barrier factor for a particle with
J = 2 is

Rri =
9 + 3

4

(√
M2
r − si rri

)2
+ 1

16

(√
M2
r − si rri

)4
9 + 3

4 (
√
s− si rri)2 + 1

16 (
√
s− si rri)4

, (4)

with radii rri 0.943 fm for resonances in all channels, except for f2(1270) and
f2(1960) for which the radii are: for f2(1270), 1.498, 0.708, and 0.606 fm
in channels ππ, KK̄ and ηη, respectively, and for f2(1960), 0.296 fm in the
KK̄ channel. The background part has the form

dbgr = exp

−i 3∑
i=1

(√
s− sn
s

)5

(an + ibn)

 , (5)

where

a1 = α11 +
s− 4m2

K

s
α12 θ

(
s− 4m2

K

)
+
s− sv
s

α10 θ(s− sv) , (6)
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bn = βn +
s− sv
s

γn θ(s− sv) , (7)

where α11, α12, α10, βn and γn are background parameters, and sv = 4m2
v

(mv = 759) is a combined threshold of the channels ηη′, ρρ, and ωω.
The data for the ππ scattering are taken from an energy-independent

analysis by Hyams et al. [8]. The data for ππ → KK̄, ηη are taken from
works in Ref. [9]. The parameters of the Breit–Wigner generators of the
poles are shown in Table I.

TABLE I

The parameters of the Breit–Wigner forms for 11 f2-states (in MeV).

State Mr fr1 fr2 fr3 fr4

f2(1270) 1276.3± 13 468.9± 34.2 201.6± 45.4 89.9± 11.4 7.2± 4.76
f2(1430) 1534.7± 38 28.5± 11.7 253.9± 94.2 89.4± 14.5 51.6± 21.3
f2(1525) 1760± 12.4 129.5± 51.3 259± 108.4 469.7± 55.3 90.3± 32.2
f2(1600) 1450.5± 98 128.3± 10.8 562.3± 99.2 32.7± 17.9 8.2± 1.2
f2(1730) 1719.8± 98 78.8± 19.3 289.5± 38.9 460.3± 98.1 108.6± 28.3
f2(1810) 1962.2± 48 132.6± 74.8 331± 162.2 319± 57.8 62.4± 33.6
f2(1960) 1601.5± 68 75.5± 47.8 315± 246.7 388.9± 91.5 127± 36.8
f2(2000) 2202.0± 47 133.4± 15.3 545± 34.24 381± 25.72 168.8± 34.6
f2(2020) 2006± 35.1 155.7± 91.4 169.5± 51.8 60.4± 13.83 168.8± 74.8
f2(2240) 2387± 62.3 175± 61.4 395± 87.2 24.5± 15.7 462.8± 92.1
f2(2410) 2027± 150 50.4± 11.2 441± 116.9 58± 12.5 128± 34.82

The background parameters are: α11 = −0.0755, α12 = 0.0225, α10 =
−0.2344, β1 = −0.0782, β2 = −0.985, β3 = −0.5162, γ1 = −0.05215,
γ2 = 0.7494 and γ3 = 0.786.

4. Analysis of the F -wave amplitude in the IGJPC=1+3−− sector

The dominant modes of decay of the ρ3(1690) are ππ, 4π, ωπ and KK̄
that are taken into account in analysis of the ππ scattering data in the
IGJPC = 1+3−− sector by Hyams et al. [8] and therefore have used the four-
channel Breit–Wigner forms in constructing the Jost matrix determinant
d (
√
s− s1,

√
s− s2,

√
s− s3,

√
s− s4), where s1, . . . , s4 are respectively the

thresholds of the first four channels given above. For the combined analysis
of data, the Le Couteur–Newton relations [5–7] have been used. These
relations express the S-matrix elements of all coupled processes in terms of
the Jost matrix determinant as below

S11 =
d (−
√
s− s1, . . . ,

√
s− s4 )

d (
√
s− s1, . . . ,

√
s− s4 )

. (8)
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The resonance part of the d-function Eq. (3) has the form

dres(s) =
∏
r

M2
r − s− i

4∑
j=1

(√
s− sj
M2
r − sj

)7

Rrjf
2
rj

 . (9)

The Blatt–Weisskopf factor for a particle with J = 3 is

Rrj =
15+3

(√
M2
r − sj rrj

)2
+ 2

5

(√
M2
r − sj rrj

)4
+ 1

15

(√
M2
r − sj rrj

)6
15 + 3

(√
s− sj rrj

)2
+ 2

5

(√
s− sj rrj

)4
+ 1

15

(√
s− sj rrj

)6
(10)

with radii rrj = 0.927 fm in all channels. The background part is

dbgr = exp

−i(√s− 4m2
π

s

)7

(αn + iβn)

 , (11)

where αn and βn are background parameters. Values of α1 and β1 are
−0.0127 and 0.0067 respectively, and α2, α3, β3 and β3 are fixed at zero.
In the analysis, cases with one and two resonances, namely ρ3(1690) and
ρ3(1950), have been considered.

The parameters of the Breit–Wigner generators of the poles are shown in
Table II. One can also calculate position of the poles using these parameters.

TABLE II

Mass and total width of the ρ2(1690), ρ2(1950) and their branching ratios compared
with the average values from the PDG Tables (in MeV).

State Mr fr1 fr2 fr3 fr4

ρ3(1690) 1707.8± 13.7 284.4± 15.9 435.3± 21.0 208.6± 18.4 113.5± 25

ρ3(1950) 1833.5± 28 96.3± 18.3 331.8± 28.0 297.7± 16.5 110.4± 28.3

5. Multichannel amplitudes and dispersion relations

Having matrix element S11 from Eqs. (1) and (8), one can calculate the
full amplitudes f I` (s)in for given isospin I and spin `

f I` (s)in =

√
s

2k

S11 − 1

2i
, (12)

where k =
√
s/4−M2

π and Mπ is the pion mass.
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In order to obtain a precise description of ππ amplitudes, GKPY disper-
sion relations [10, 11] with imposed crossing symmetry have been applied
to the D- and F -wave amplitudes. These new dispersion relations should
impose quite strong constraints in the fits to the data on the analyzed ππ
interactions. Hence,

Ref I` (s)out =

2∑
I′=0

CII
′

st a
I′
0 +

2∑
I′=0

3∑
`′=0

Smax∮
4m2

π

ds′KII′
``′ (s, s′)Imf I

′
`′ (s

′)in + dI` (s) .

(13)
Given f I` (s) amplitude fulfills the crossing symmetry when real part of

the output amplitude Re f I` (s)
out is equal to real part of the input one

Re f I` (s)
in. The angular momentum `′ of the input amplitudes goes from 0

to 3 (the S, P , D and F waves) and because of the Bose symmetry, the
sums `′ + I ′ and ` + I for input and output amplitudes respectively, must
be even (see Ref. [12] for more details).

In order to check how the D- and F -wave amplitudes described in Secs. 3
and 4 fulfill the crossing symmetry condition, one has to use them as the
input amplitudes in Eq. (13), i.e. integrate their imaginary parts with proper
kernels from the threshold to 1.42 GeV. However, as it is shown in Fig. 1,
clearly one sees an inappropriate behavior of phase shifts (original) near
the ππ threshold. These amplitudes have to be re-defined in the vicinity of
the ππ threshold. Therefore, in order to allow the integration from the ππ
threshold, the D-wave amplitude has been re-defined for energies

√
sth <√

s <
√
s02, where

√
s02 is matching energy for the D wave and

√
sth is the

ππ threshold. Above this energy, the amplitude remains fully equivalent to
the “original” multichannel one from Sec. 3. Below this energy, the amplitude
is parameterized as

sin 2δ02 =
4mπk

5

√
s

[
a02 + b02k

2 + c02k
4 + d02k

6 +O
(
k8
)]
. (14)

In Eq. (14), the parameters a02 and b02 are the scattering length and the
so-called slope parameter respectively, which can be fixed or fitted to the
data and to the dispersion relations. In this analysis, they were fixed at the
values: a02 = 0.00178 m−5π and b02 = 0.00035 m−7π . The parameters c02 and d02
are calculated from the continuity conditions for the phase shifts and their
first derivatives at the matching energy to match smoothly the phase shift
Eq. (14) with the multichannel “original” one from Sec. 3 at the matching
energy

√
s02. Figure 1 (left) shows how the extended amplitude solved the

threshold behavior problem of low-energy D wave ππ interaction amplitude
and value of the matching energy

√
s02 was found to be 752.
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Fig. 1. Phase shifts for the D- (left) and the F - (right) wave amplitudes as a
function of energy for the original (solid line), extended (dash-dotted line) and re-
fitted (dashed line) amplitudes considered in the text from threshold up to 1.8 GeV.

To refine the F -wave amplitude in the vicinity of ππ threshold, another
way of refining has been applied. To refine this part, some pseudo-date have
been generated from ππ threshold up to 895 MeV using GKPY equations to
uplift the phase shift.

6. Results of refining

The partial waves are considered to be fully independent in the mul-
tichannel analysis. Now, to improve agreement of the D0- and F1-wave
amplitudes with the crossing symmetry, the extended amplitudes have been
fitted to the GKPY dispersion relations and to the data, where for the D
wave the S0, S2, P1, D2 and F1 and, for the F wave the S0, S2, P1,
D0 and D2 have been taken from [10] and fixed. Hence, the total χ2 was
composed of five parts for D wave and six parts for F wave

χ2 = χ2
Data +

n∑
j=1

χ2
DR(j) , (15)

where n = 4 is for the S0, S2, P1 and D0 partial waves for the D wave,
and n = 5 is for the S0, S2, P1, D0 and F1 partial waves for the F wave,
respectively. Corresponding χ2

Data and χ2
DR(j) are expressed by

χ2
Data =

(
δexpi − δthi

)2
(∆δexpi )

2 +

(
ηexpi − ηthi

)2
(∆ηexpi )

2 (16)

and

χ2
DR(j) =

NDR∑
i=1

[
Ref I` (si)

out − Ref I` (si)
in
]2

[∆DR]2
. (17)
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Symbols δi and ηi denote experimental and calculated values of the phase
shift and inelasticity parameter in the assumed channels of the D wave
(F wave) in all considered channels and with corresponding errors ∆. NDR

for DR was chosen to be 26 for each fitted partial wave to cover the mππ

range from 0.31 GeV to 1.09 GeV with step 0.03 GeV. The output ampli-
tudes Ref I` (si)

out in Eq. (17) are calculated using the GKPY equations (13)
and their errors (∆DR) are fixed at 0.01. Note that, the input amplitudes
Re f I` (si)

in come directly from the extended amplitudes and other input am-
plitudes are taken from Ref. [10].

6.1. Results of the analysis for D wave

The total number of data points ND0
δ +ND0

η is 199. The free parameters
considered in the D0 wave are: the background parameters in the elastic
channel α11, α12, α10, β1, β2, β3, γ1, γ2 and γ3, the matching energy

√
s02

and parameters of the states f2(1270), f2(1430), f2(1525) and f2(1600).
Therefore, the total number of free parameters is 30.

Table III shows values of the total χ2 and its contributions from the
data and the dispersion relations along with the χ2 per number of degrees
of freedom χ2/n.d.f. before (extended) and after (re-fitted) fitting. (n.d.f. =
199 + 104− 30).

TABLE III

Values of the χ2 for the extended (before fitting) and re-fitted (after fitting) D-wave
amplitude.

χ2 χ2
Data χ2

DR χ2/n.d.f.

Extended 1129.35 758.08 371.267 4.14
Re-fitted 409.84 270.76 139.08 1.50

Figure 2 illustrates real parts of input and output of the extended and
re-fitted amplitudes for D0 wave. However, extended amplitude does not
fulfill the crossing symmetry condition yet. A big difference is very well seen
between the real parts of the input and output amplitudes. Effect of the
crossing symmetry condition is also seen very well in Fig. 2 (right) below
about re-fitted matching energy i.e. 907 MeV where unsuitable behavior of
amplitude have been solved.

Concerning the dominant and the ineffective states in the multichannel
analysis on the processes ππ → ππ, KK̄ and ηη in the IGJPC = 0+2++

sector, several fits have been performed. Table IV shows values of the χ2

for different fits with neglected states. Nevertheless, conditions are the same
for all fits and they just differ by the neglected states. Values of the χ2
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achieved through fits 1, 2, 3 and 6 are almost equal. From the point of view
of χ2, one can neglect the states f2(2240) and f2(2410), and conclude that
these two states are negligible on the processes ππ → ππ, KK̄ and ηη in the
IGJPC = 0+2++ sector. Additionally, states f2(1270), f2(1430), f2(1525)
and f2(1600) which strongly influence the behavior of the amplitude and
consequently value of the χ2 are the dominant states.

Fig. 2. Real parts of input and output of the D0 amplitude before (left) and after
(right) fitting.

TABLE IV

Values of χ2 when some of the states are neglected in the IGJPC = 0+2++ sector
after fitting.

Fit No. Neglected states χ2

1 All stated are included 409.8
2 f2(2240) 409.7
3 f2(2410) 409.4
4 f2(2000) 429.5
5 f2(1810) 419.1
6 f2(2240) f2(2410) 409.9
7 f2(2240) f2(2410) f2(2000) 439.8
8 f2(2240) f2(2410) f2(2000) f2(1810) 442.9
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6.2. Results of the analysis for F wave

The total number of data points NF1
δ +NF1

η is 108. The free parameters
considered in the F1 wave are: the background parameters in the elastic
channel α1 and β1 and five parameters of the state ρ3(1690).

Table V shows values of the total χ2 and its contributions from the data
and the dispersion relations along with the χ2 per number of degrees of
freedom for several fits. Table VI shows values of the Mr for ρ3(1690) and
ρ3(1950) states before and after fitting which gives us significant information
about masses of the states in all possible fits.

TABLE V

Values of the χ2 for the re-fitted (after fitting) F -wave amplitude for all possible
choices.

Fit No. Free states Neglected n.d.f. χ2
Data χ2

DR χ2 χ2/n.d.f.
states

Fa ρ3(1690) — 226 380.19 140.22 520.40 2.30
Fb ρ3(1950) — 226 542.18 151.33 693.51 3.07
Fc ρ3(1690), ρ3(1950) — 221 366.73 139.71 506.43 2.29
Fd ρ3(1690) ρ3(1950) 226 366.24 139.84 506.08 2.24
Fe ρ3(1950) ρ3(1690) 226 366.34 139.84 506.18 2.24

TABLE VI

Values of theMr for ρ3(1690) and ρ3(1950) states before and after fitting for F -wave
amplitude. For neglected states, the initial value of the mass changed to 30000 at
the beginning.

Fit No. ρ3(1690) ρ3(1950)

Initial → Final Initial → Final

Fa 1710.7 → 1713.8 1833.5 → 1833.5
Fb 1710.7 → 1710.7 1833.5 → 11286
Fc 1710.7 → 1716.1 1833.5 → 5032.7
Fd 1710.7 → 1715.9 30000 → 30000
Fe 30000 → 30000 1833.5 → 1715.9

Looking at the re-fitted masses of the states ρ3(1690) and ρ3(1950) in
Table VI, it is clearly seen that, when parameters of the state ρ3(1950) are
free, mass of the state ρ3(1690) must be either neglected at the beginning or
becomes very big after fitting. Therefore, fits Fb, Fc and Fe, where parame-
ters of the ρ3(1950) state are taken to be free, are not appropriate. One can
conclude that both fits Fa and Fd are plausible although χ2 of the fit Fd is
smaller than the one in the fit Fa.
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Figure 3 illustrates real parts of input and output of the extended and re-
fitted amplitudes for F1 wave. However, extended amplitude does not fulfill
the crossing symmetry condition yet. The effect of the crossing symmetry
condition is very well seen particularly below about 900 MeV where some
pseudo-data were added.

Fig. 3. Real parts of input and output of the F1 amplitude before (left) and after
(right) fitting.

6.3. Results of the analysis for D and F waves

The D- and F -wave amplitudes have been precisely determined sepa-
rately in Secs. 6.1 and 6.2 using the dispersion relations with imposed cross-
ing symmetry condition. However, theD- and F -wave amplitudes intuitively
correlate with each other in kernel term of Eq. (13). Therefore, to improve
agreement of the D0- and F1-wave amplitudes with the crossing symmetry,
the re-fitted amplitudes of D and F waves have been fitted to the GKPY
dispersion relations and to the data, where the S0, S2, P1 and D2 have
been taken from [10] and fixed. Consequently, the total χ2 was composed of
six parts

χ2 =

2∑
j=1

χ2
Data(j) +

3∑
j′=0

χ2
DR

(
j′
)
, (18)

where j = 1, 2 itemizes the D and F partial waves respectively, and j′ =
0, . . . , 3 itemizes all partial waves. Table VII shows values of the χ2 for the
D- and F -wave amplitudes after fitting using results of the re-fitted D- and
F -wave amplitudes in Secs. 6.1 and 6.2.
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TABLE VII

Values of the χ2 for the D- and F -wave amplitudes after fitting. DFa(DFd) is the
fit using fitted parameters of D wave and, Fa(Fd) for F wave as initial values.

Fit No. χ2
Data(D) χ2

Data(F ) χ2
DR χ2 χ2/n.d.f.

DFa 252.7 379.8 128.9 761.5 1.90
DFd 257.7 366.4 129.4 753.6 1.88

7. Conclusions

To conclude, the new re-fitted multichannel D and F wave ππ scattering
amplitudes on the processes ππ → ππ, KK̄ and ηη in the IGJPC = 0+2++

and the 1+3−− sectors have been precisely determined. New amplitudes
fulfilled crossing symmetry and describe the ππ threshold region very well.
The dominant and the ineffective states of 0+2++ and 1+3−− sectors have
been specified.

This work has been funded by the Polish National Science Centre (NCN)
Grant No. DEC-2013/09/B/ST2/04382.

REFERENCES

[1] S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985).
[2] P. Bydžovský, R. Kamiński, V. Nazari, Phys. Rev. D 90, 116005 (2014).
[3] J. Blatt, V. Weisskopf, Theoretical Nuclear Physics, Wiley, NY 1952.
[4] D. Krupa, V.A. Meshcheryakov, Yu.S. Surovtsev, Nuovo Cim. A 109, 281

(1996).
[5] K.J. Le Couteur, Proc. Roy. Soc. A 256, 115 (1960).
[6] R.G. Newton, J. Math. Phys. 2, 188 (1961).
[7] M. Kato, Ann. Phys. 31, 130 (1965).
[8] S.D. Protopopescu et al., Phys. Rev. D 7, 1279 (1973); B. Hyams et al.,

Nucl. Phys. B 64, 134 (1973); P. Estabrooks, A.D. Martin, Nucl. Phys. B
79, 301 (1974).

[9] S.J. Lindenbaum, R.S. Longacre, Phys. Lett. B 274, 492 (1992);
R.S. Longacre et al., Phys. Lett. B 177, 223 (1986).

[10] R. García-Martín et al., Phys. Rev. D 83, 074004 (2011).
[11] R. Kamiński, Phys. Rev. D 83, 076008 (2011).
[12] V. Nazari, P. Bydžovský, R. Kamiński, Acta Phys. Pol. B 45, 1549 (2014).

http://dx.doi.org/10.1103/PhysRevD.32.189
http://dx.doi.org/10.1103/PhysRevD.90.116005
http://dx.doi.org/10.1007/BF02731015
http://dx.doi.org/10.1007/BF02731015
http://dx.doi.org/10.1098/rspa.1960.0096
http://dx.doi.org/10.1063/1.1703698
http://dx.doi.org/10.1016/0003-4916(65)90235-6
http://dx.doi.org/10.1103/PhysRevD.7.1279
http://dx.doi.org/10.1016/0550-3213(73)90618-4
http://dx.doi.org/10.1016/0550-3213(73)90618-4
http://dx.doi.org/10.1016/0550-3213(74)90488-X
http://dx.doi.org/10.1016/0550-3213(74)90488-X
http://dx.doi.org/10.1016/0370-2693(92)92022-9
http://dx.doi.org/10.1016/0370-2693(86)91061-0
http://dx.doi.org/10.1103/PhysRevD.83.074004
http://dx.doi.org/10.1103/PhysRevD.83.076008
http://dx.doi.org/10.5506/APhysPolB.45.1549

	1 Introduction
	2 The S-matrix formalism for N coupled channels
	3 Analysis of the D-wave amplitude in the ... sector
	4 Analysis of the F-wave amplitude in the ... sector
	5 Multichannel amplitudes and dispersion relations
	6 Results of refining
	6.1 Results of the analysis for D wave
	6.2 Results of the analysis for F wave
	6.3 Results of the analysis for D and F waves

	7 Conclusions

