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A new method of combining an NLO-corrected hard process with an
LO parton shower Monte Carlo, nicknamed KrkNLO, was proposed re-
cently. It is simpler than well-established two other methods: MC@NLO
and POWHEG. In this contribution, we present some results of extensive
numerical tests of the new method for single Z-boson production at hadron
colliders and numerical comparisons with two other methods as well as with
NNLO calculations.
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1. Introduction

The KrkNLO method of combining the NLO-corrected hard process with
the LO parton shower Monte Carlo (PS MC) was proposed in Ref. [1] and
tested numerically in Ref. [2] using a not very realistic parton shower Monte
Carlo (PS MC). A recent paper [3] reports on implementation of the KrkNLO
method within the Sherpa [4] and Herwig++ [5–7] PS MCs, presents a lot
of numerical results from the new method, comparing them with fixed-order
NLO results from the MCFM program (MC integrator) [8], NNLO results
from DYNNLO [9] and matched results obtained using MC@NLO [10] and
POWHEG [11].

Multitude of the results of Ref. [3] will be presented in the following
only partly. On the other hand, let us describe briefly a wide range of
other research performed by the Kraków group in this very active area of
combining resummed NLO QCD calculations with PS MCs.
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Early activity (2004–06) on the parton MC and NLO QCD started with
solving exactly the LO and NLO DGLAP evolution equations, using Marko-
vian MC methods, MMC programs, see Refs. [12–14]1. MMCs were used to
test constrained MC (CMC) series of programs (2005–07), see Refs. [16, 17].
CMCs implement the same evolution with constrained/predefined final x,
an alternative to backward evolution [18] in the PS MC, aiming at better
control (NLO level) of the distributions generated by LO PS MC. CMCs
were for single ladder/shower, without hard process, but with exclusive LO
kernels and optionally with inclusive NLO kernels.

The path from DGLAP to parton shower MC was continued with the
exercise in which two CMC modules and hard process matrix element were
combined into complete PS MC for the Drell–Yan (DY) process, see e.g.
Refs. [2, 19], albeit not upgraded with realistic parton distribution functions
(PDFs) and kinematics. However, this kind of PS MC has been instrumental
in testing various new ideas on implementing: (i) the NLO corrections in the
exclusive evolution kernels in the initial-state ladders/showers many times,
(ii) the NLO corrections to the hard process just once (finally resulting in
the KrkNLO method) thanks to perfect numerical and algebraic control over
the LO distributions.

Another branch of the research has covered the NLO corrections to PS
MC, that is the problem of including the NLO corrections in an exclusive
form into evolution (kernels) in the (initial-state) ladder/shower, which was
never addressed before2. The first solution, albeit limited to non-singlet
evolution kernels, was proposed and tested numerically in Refs. [20, 21], us-
ing the NLO kernels in the exclusive form calculated from scratch in the
Curci–Furmanski–Petronzio [22] (CFP) framework. The non-singlet 2-real
kernels were presented in Ref. [23]. A simplified and faster scheme was re-
ported (with numerical tests) in Ref. [24]. An even simpler and faster scheme
of the NLO-correcting PS MC (single initial-state ladder) was reported in
Ustroń 2013, see Ref. [25]. Also the singlet evolution kernels are now al-
most complete (unpublished). It is a major problem to include consistently
virtual corrections to exclusive kernels starting from the CFP scheme. The
first solution was formulated (unpublished) exploiting recalculated virtual
corrections in the CFP scheme to the non-singlet kernels [26]. The above
breakthrough is important but points to: (i) the need of better understand-
ing of the MC distributions in PS MC, (ii) especially their kinematics, the
definition of the evolution variable, etc.

1 These MMCs were also capable to solve the CCFM [15] evolution plus DGLAP.
2 Except of statements that it is for sure unfeasible.
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2. The KrkNLO method

Methodology of the KrkNLO for the DY process was primarily defined in
Ustroń 2011 [27], but without numerical tests. The first numerical validation
of KrkNLO on top of Double-CMC PS was demonstrated in Ref. [2]. A more
complete discussion of the KrkNLO scheme with the introduction of PDFs in
the Monte Carlo (MC) factorisation scheme was provided in Ref. [1], but the
MC implementation was still on top of the not-so-realistic Double-CMC PS.
Finally, in recent Ref. [3], a new implementation on top of Sherpa and Her-
wig++ (instead of two CMCs) was done. Comparisons of KrkNLO numerical
results with NLO calculations of MCFM (fixed-order NLO), MC@NLO and
POWHEG for the DY process were presented.

The central object in the KrkNLO method is a multiplicative NLO weight
used for re-weighting LO parton shower events, which for the qq̄ incoming
partons takes the following compact form in terms of the standard Sudakov
variables α and β and the LO PS differential distribution σLO
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dσ0(ŝ, θF)

dΩ

(1 − β)2

2
+
dσ0(ŝ, θB)
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As pointed out in Ref. [2], for getting the complete NLO corrections to the
hard process, it is enough to retain in the above sums over gluons

∑
j only a

single term, the one with the maximum k2
T from one of the two showers3. In

the case of the backward-evolution algorithm and kT-ordering, the retained
gluon is just the one which was generated first4.

3 Independently of the ordering type, angular or kT-ordering, in PS MC.
4 This exploits the Sudakov suppression as in POWHEG, but there is no need of trun-
cated showers for angular ordering.
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Two essential ingredients in the KrkNLO method are: (1) completeness
of the hard process phase space in PS MC and (2) the use of PDFs in the
so-called MC factorisation scheme. In modern PS MCs, such as Sherpa and
Herwig++, the phase-space completeness is luckily not a problem. PDFs
in the MC factorisation scheme are obtained from PDFs in the MS scheme
with the following transformation:
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Note that in the MC scheme, the quark PDF gets contribution from gluons.
The gluon PDF can be untouched as long as we consider the DY process at
NLO, fMC

g (x,Q2) = fMS
g (x,Q2). Plots of quark PDFs in the MC scheme

and a detailed discussion why such PDFs are instrumental for assuring the
completeness of the NLO corrections in the KrkNLO scheme can be found in
Ref. [3].

3. Numerical results

Numerical results presented in Ref. [3] start with detailed comparisons
of the KrkNLO results with the fixed-order results from the MCFM integra-
tor [8]. We skip that and in Fig. 1 we show the comparisons of the KrkNLO
results with these of MC@NLO and POWHEG. The overall pattern of the
differences and their size of the order of 20% is typical for this kind of com-
parisons and is attributed to the missing NNLO corrections. In Fig. 11 of
Ref. [3], the results corresponding to changing the factorisation and renor-
malisation scales by the factors of 2 and 1/2 confirm this statement. The
actual size of the missing NNLO corrections can be seen in Fig. 2, where
our results are compared to the fixed-order NNLO results of the DYNNLO
program [9].



NLO Corrections to Hard Process in Parton Shower MC . . . 2093

10−2

10−1

100

101

102

d
σ
/d

p
T
,Z

[p
b
/G

eV
]

8 TeV: qq̄ and qg channels (full parton shower)

0.6

0.8

1.0

1.2

1.4

R
at
io

to
M
C
@
N
L
O

0.6

0.8

1.0

1.2

1.4

0 20 40 60 80 100 120 140 160 180 200

ra
ti
o
to

P
ow

h
eg

pT,Z [GeV]

MC@NLO

MC@NLO αs(M
2

Z)

Powheg

KrkNLO αs(q
2)

KrkNLO αs(M
2

Z)

80

100

120

140

160

d
σ
/d

y Z
[p
b
]

8 TeV: qq̄ and qg channels (full parton shower)

0.95

1.00

1.05

ra
ti
o
to

M
C
@
N
L
O

0.90

0.95

1.00

1.05

-3 -2 -1 0 1 2 3

ra
ti
o
to

P
ow

h
eg

yZ

MC@NLO

Powheg

KrkNLO αs(q
2)

KrkNLO αs(M
2

Z
)

Fig. 1. Distributions of the Z-boson transverse momentum (left) and rapidity
(right) from the KrkNLO method compared with the MC@NLO and POWHEG re-
sults.

Fig. 2. Distributions of the Z-boson transverse momentum from the KrkNLO
method compared with the results from the DYNNLO program [9] (left). The
results from MC@NLO and POWHEG are also shown (right).
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For the sake of completeness, in Table I, we also present the correspond-
ing results for the total cross section. All presented numerical results are
taken from Ref. [3].

TABLE I

Values of the total cross section from the KrkNLO method compared with the
MCFM, MC@NLO and POWHEG results.

σqq̄+qg
tot [pb]

MCFM 1086.5 ± 0.1
MC@NLO 1086.5 ± 0.1
POWHEG 1084.2 ± 0.6

KrkNLO αs

(
q2
)

1045.4 ± 0.1

KrkNLO αs

(
M2

Z

)
1039.0 ± 0.1

4. Summary and outlook

A new method of combining the NLO-corrected hard process with PS
MC, called KrkNLO, was introduced and tested extensively for single Z-boson
production at the LHC. It is much simpler than the MC@NLO and POWHEG
methods at the expense of the introduction of PDFs in the new, so-called
Monte Carlo, factorisation scheme. In the near future, this method will be
applied to Higgs boson production and hopefully extended to the NNLO-
corrected hard process, where its simplicity may be a very desirable feature.

This work is partly supported by the Polish National Science Centre
grant DEC-2011/03/B/ST2/02632, the Polish National Science Centre grant
UMO-2012/04/M/ST2/00240.
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