
Vol. 47 (2016) ACTA PHYSICA POLONICA B No 4

N-BY-N RANDOM MATRIX THEORY
WITH MATRIX REPRESENTATIONS OF OCTONIONS

John M. Nieminen

Christie Digital Systems Inc.
809 Wellington Street North, Kitchener, Ontario N2G 4Y7, Canada

(Received November 17, 2015; revised version received January 26, 2016)

The eigenvalue statistics of real adjoints of N ×N Hermitian octonion
random matrices are studied numerically. By allowing various matrix ele-
ments to be turned OFF or ON, we are able to observe eigenvalue statistics
that are described by the three Gaussian ensembles of classical random
matrix theory. In certain cases, we have also observed eigenvalues that
appear to be a superposition of two independent spectra, each of which is
described by statistics of the Gaussian symplectic ensemble.
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Random matrix theory (RMT) is a vast subject which has been suc-
cessfully applied to many fields of study over the years (see, for example,
Refs. [1–14]). As of 2012, a journal [15] dedicated to the theory and appli-
cations of random matrices has been active, indicating just how large the
subject has become. Classical RMT is a usual starting point for novice re-
searchers; it consists of three ensembles known as the Gaussian orthogonal
(GOE), unitary (GUE), and symplectic (GSE) ensembles. The matrices
that are used to construct the GOE, GUE, and GSE are real symmetric,
complex Hermitian, and quaternion real, respectively, with appropriately
defined matrix elements — Refs. [16, 17] provide edifying discussions on the
Gaussian ensembles. A natural question for the novice to ask is: Why is
there not a classical ensemble associated with the octonions [18–20], which
are the largest normed division algebra? The answer: It is well-understood
that octonions cannot be represented as a matrix algebra and, for this rea-
son, there is not a place for them in RMT. However, a recent study [21] has
shown that some pseudo-real matrix representations of octonions [22] can be
easily brought into RMT and that, at least for 2 × 2 matrices, some inter-
esting results can be obtained. For example, a random matrix model that
was tunable to produce level repulsion from linear to octic was introduced.
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Unfortunately, the work of Ref. [21] did not go beyond 2 × 2 matrices and
it was left as an open question as to what would happen if the model was
extended to N ×N matrices, where N is large. The purpose of the current
study is to provide some answers to this question, through numerical exper-
iments. (It should be noted that the idea of bringing octonions into RMT is
far from novel — Dyson himself considered this in footnote 10 of his famous
paper on the “threefold way” [23].)

We begin with a review of some terminology. Let O denote the octonion
algebra over the real number field R and let a ∈ O — it is known that, based
on an extension of the Cayley–Dickson process and results from real matrix
representations of quaternions, a (pseudo)-real matrix representation of a
is [22]

ω(a) =



a0 −a1 −a2 −a3 −a4 −a5 −a6 −a7
a1 a0 −a3 a2 −a5 a4 a7 −a6
a2 a3 a0 −a1 −a6 −a7 a4 a5
a3 −a2 a1 a0 −a7 a6 −a5 a4
a4 a5 a6 a7 a0 −a1 −a2 −a3
a5 −a4 a7 −a6 a1 a0 a3 −a2
a6 −a7 −a4 a5 a2 −a3 a0 a1
a7 a6 −a5 −a4 a3 a2 −a1 a0


, (1)

where ak ∈ R (k = 0, 1, . . . , 7). The matrix ω(a) is known as the left matrix
representation of a over R. Next, consider the following 2 × 2 Hermitian
octonion matrix

A =

(
b a
a c

)
, (2)

where b, c ∈ R, and its real adjoint [22]

ω(A) =

(
bI8 ω(a)
ωT (a) cI8

)
, (3)

where I8 is an 8 × 8 identity matrix. It is known that ω(A) (and hence A)
has two real eigenvalues, each of which is eightfold degenerate. In Ref. [21],
an ensemble of random matrices given by ω(A) was studied — the variables
b and c were taken to be zero-centered Gaussian distributed with a variance
of two and the variables ak (k = 0, 1, . . . , 7) were zero-centered Gaussian
distributed with a variance of one. It was shown that the nearest-neighbour
spacing distribution (NNSD) of an ensemble of such matrices is given by
PW(S;β = 8), where (see, for example, Ref. [24])

PW(S;β) = A(β)Sβ exp
[
−B(β)S2

]
, (4a)
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A(β) = 2

[
Γ
(
β+2
2

)]β+1

[
Γ
(
β+1
2

)]β+2
, and B(β) =

[
Γ
(
β+2
2

)]2
[
Γ
(
β+1
2

)]2 . (4b)

(Note that S represents normalized spacings, such that
∫∞
0 SPW(S;β) dS=1,

and that
∫∞
0 PW(S;β) dS = 1.) PW(S;β) are the Wigner surmises of RMT

and β is referred to as the “level repulsion” parameter — β = 1, 2, and 4,
for the GOE, GUE, and GSE, respectively. The Wigner surmises are exact
for 2× 2 random matrices and serve as excellent approximations for N ×N
random matrices. Given that PW(S;β = 8) describes the NNSD for an en-
semble of 2 × 2 random matrices defined by ω(A), octic level repulsion is
present. What of N ×N random matrices?

Consider the N ×N Hermitian octonion matrix (our notation is an ex-
tension of that given in Ref. [22] for 3 × 3 Hermitian octonion matrices)

AN×N =


a11 a12 . . . a1N
a12 a22 . . . a2N
...

...
. . .

...
a1N a2N . . . aNN

 , (5)

where a11, a22, ..., aNN ∈ R. The real adjoint of AN×N is

ω(AN×N ) =


ω(a11) ω(a12) . . . ω(a1N )
ωT (a12) ω(a22) . . . ω(a2N )

...
...

. . .
...

ωT (a1N ) ωT (a2N ) . . . ω(aNN )

 , (6)

and it is understood that ω(aii) = aiiI8 (where i = 1, 2, . . . , N). Note that
ω(aij) (where i, j = 1, 2, . . . , N, i 6= j) are real matrix representations of
aij ∈ O and have the matrix form given by

ω(aij)=



aij0 −aij1 −aij2 −aij3 −aij4 −aij5 −aij6 −aij7
aij1 aij0 −aij3 aij2 −aij5 aij4 aij7 −aij6
aij2 aij3 aij0 −aij1 −aij6 −aij7 aij4 aij5
aij3 −aij2 aij1 aij0 −aij7 aij6 −aij5 aij4
aij4 aij5 aij6 aij7 aij0 −aij1 −aij2 −aij3
aij5 −aij4 aij7 −aij6 aij1 aij0 aij3 −aij2
aij6 −aij7 −aij4 aij5 aij2 −aij3 aij0 aij1
aij7 aij6 −aij5 −aij4 aij3 aij2 −aij1 aij0


.

(7)
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In our first study, we begin with the matrix ω(AN×N ) and set N = 2000.
Next, the independent variables aii are taken to be zero-centered Gaussian
distributed with a variance of two and the variables aijk (i 6= j, k = 0,1,. . . ,7)
are taken to be zero-centered Gaussian distributed with a variance of one.
The eigenvalues, Ei (where i = 1, 2, . . . , N), of this matrix are then deter-
mined numerically and we can begin to make some observations. The first
thing we note is that the eigenvalues are not eightfold degenerate, as was the
case for 2×2 matrices, and that 8N distinct eigenvalues exist. (It should be
noted that for N = 3, the eigenvalues were found to be fourfold degenerate,
in agreement with Refs. [22, 25, 26]. However, when N > 3, we noted that
8N distinct eigenvalues were always present, in contrast to Ref. [22] where
it was stated that the multiplicity [degeneracy] was two for those cases.)

To study details of the eigenvalues, we transform them as follows:

xi = Ei
/√

β′v2N , (8)

where v2 is the variance of the variables aijk (i 6= j) — in our case, v2 = 1.
Shown in Fig. 1, as a histogram, is the density (where the area has been
normalized to unity) of the transformed eigenvalues with β′ = 8 in Eq. (8).
The solid curve is given by

ρ(x) =

{
1
2π

√
4− x2 , |x| < 2 ,

0 , |x| > 2 ,
(9)

and
∫∞
−∞ ρ(x) dx = 1. In classical RMT ρ(x), which is known as the Wigner

semicircle law, holds (in the large-N limit) for the GOE, GUE, and GSE,
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Fig. 1. Numerical study (histogram) of the eigenvalue density of a random matrix
defined by ω(AN×N ), with N = 2000 (see the text for details). The solid curve is
the Wigner semicircle law, i.e. Eq. (9), with β′ = 8.
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and in those cases, β′ = β = 1, 2, or 4, respectively. What we have just
shown, at least numerically, is that the Wigner semicircle law also holds for
the random matrix given by ω(AN×N ), if β′ = 8.

Next, we study the NNSD of the unfolded [1] eigenvalues, where ρ(x) can
be used to perform the unfolding. The result of this is given as the histogram
in Fig. 2 — note that the area under the histogram has been normalized to
be unity, as has the mean spacing. The solid curve represents PW(S;β = 1),
which is the Wigner surmise for the GOE. We have, therefore, shown that
the NNSD of an N ×N random matrix given by ω(AN×N ) is well-described
by GOE statistics and hence octic repulsion is not present as it was in the
2× 2 case.
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Fig. 2. Numerical study (histogram) of the NNSD of unfolded eigenvalues of a
random matrix defined by ω(AN×N ), with N = 2000 (see the text for details).
The solid curve is the Wigner surmise for the GOE, PW(S;β = 1), and the dashed
curve is PW(S;β = 8).

To examine long-range properties of the unfolded eigenvalues of ω(AN×N ),
we have chosen to calculate the number variance, Σ2(L), for a given interval
length L. (Note that, when calculating Σ2(L), the intervals are allowed to
overlap — the start position of each new interval in our study was arbitrar-
ily taken to be 0.2 units from the start position of the previous interval.)
For our set of unfolded eigenvalues, we get what is shown in Fig. 3. It is
known that the number variance for the GUE, GOE, and GSE are (see, for
example, [16] or [1]), respectively,
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Fig. 3. Numerical study (open circles) of the number variance of unfolded eigen-
values of a random matrix defined by ω(AN×N ), with N = 2000 (see the text for
details). The solid, dashed, and dotted curves correspond to the large-L analytical
forms of Σ2(L) for the GOE, GUE, and GSE, respectively.

Σ2
β=2(L) =

1

π2
[ln(2πL) + γ + 1− cos(2πL)− Ci(2πL)]

+L

[
1− 2

π
Si(2πL)

]
, (10)

Σ2
β=1(L) = 2Σ2

β=2(L) + [Si(πL)/π]2 − Si(πL)/π , (11)

and
Σ2
β=4(L) = (1/2)Σ2

β=2(2L) + [Si(2πL)/2π]2 , (12)

where

Si(x) =
x∫

0

sin y

y
dy and Ci(x) = γ + lnx+

x∫
0

cos y − 1

y
dy , (13)

and γ = 0.5772 . . . is Euler’s constant. For large L, it is often convenient
to work with the following forms [1] (which are also shown in Fig. 3, along
with our numerical study)

Σ2
β=1(L) =

2

π2

[
ln(2πL) + γ + 1− π2

8

]
+O

(
L−1

)
, (14)

Σ2
β=2(L) =

1

π2
[ln(2πL) + γ + 1] +O

(
L−1

)
, (15)
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and

Σ2
β=4(L) =

1

2π2

[
ln(4πL) + γ + 1 +

π2

8

]
+O

(
L−1

)
. (16)

It is apparent from Fig. 3 that the number variance of the eigenvalues of
ω(AN×N ), as currently defined, follows that of the GOE. Therefore, what
we have shown is that a random matrix with elements taken to be pseudo-
real matrix representations of octonions just follow GOE statistics and, so
far, nothing very interesting has been learned.

In the hope of finding more interesting results, we now move on to our
second study. Following concepts presented in Ref. [21], we next modify
ω(aij) (i 6= j) to include eight parameters αk (where k = 0, 1, . . . , 7) as
follows:

ω(aij ;α) =



α0aij0 −α1aij1 . . . −α6aij6 −α7aij7
α1aij1 α0aij0 . . . α7aij7 −α6aij6
α2aij2 α3aij3 . . . α4aij4 α5aij5
α3aij3 −α2aij2 . . . −α5aij5 α4aij4
α4aij4 α5aij5 . . . −α2aij2 −α3aij3
α5aij5 −α4aij4 . . . α3aij3 −α2aij2
α6aij6 −α7aij7 . . . α0aij0 α1aij1
α7aij7 α6aij6 . . . −α1aij1 α0aij0


. (17)

Here, α represents the list of parameters (α0, α1, α2, α3, α4, α5, α6, α7) which
will allow us to turn matrix elements OFF or ON by setting various αi
parameters to either 0 or 1, respectively. Then, ω(AN×N ) of Eq. (6) becomes
the following matrix:

ω(AN×N ;α) =


ω(a11) ω(a12;α) . . . ω(a1N ;α)

ωT (a12;α) ω(a22) . . . ω(a2N ;α)
...

...
. . .

...
ωT (a1N ;α) ωT (a2N ;α) . . . ω(aNN )

 , (18)

and we can begin to study its eigenvalue statistics. Given the binary choice
of 0 or 1 for each of the αi parameters, it is obvious that there are 256
different choices for α, and we shall study all of them numerically. Of
course, if α = (1, 1, 1, 1, 1, 1, 1, 1), we return to our first study and if α =
(0, 0, 0, 0, 0, 0, 0, 0), the eigenvalues of ω(AN×N ;α) are trivially given by the
values of ω(aii) (where i = 1, 2, . . . , N).

Let us begin with a summary of what we have observed and then move
on to some specific examples. Shown in Table I are the results that were
obtained for various binary values of αk. Note that α# is defined to be the
number of αk-parameters (where k = 1, 2, . . . , 7) that have been set to 1.
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We observe that the eigenvalue statistics is dictated by α# — once this
has been set, the value of α0 does not change the resulting statistics. We
further observe that the semicircle law holds for all choices of α and that the
value of β′ which gets used in Eqs. (8) and (9) is equal to the total number
of αk-parameters (where k = 0, 1, . . . , 7) that have been set to 1; that is,
β′ = α0 + α#. Also given in Table I are the degeneracies of the eigenvalues
that we have observed numerically and the number of times that a given
statistic was observed [which is equal to

(
7
α#

)
].

TABLE I

Results for various ensembles of ω(AN×N ;α) random matrices having binary
αk-parameters. α# is the number of αk (k = 1, 2, ..., 7) that have been set to 1.

Level Degeneracy Value of Number
α0 α# Eigenvalue repulsion of β′ in of

statistics (S → 0) eigenvalues Eq. (8) cases

0 0 — — 8 — 1
1 0 GOE linear 8 1 1
0 1 GUE quadratic 8 1 7
1 1 GUE quadratic 8 2 7
0 2 GSE quartic 8 2 21
1 2 GSE quartic 8 3 21
0 3 2 GSEs — 4 3 35
1 3 2 GSEs — 4 4 35
0 4 GSE quartic 4 4 35
1 4 GSE quartic 4 5 35
0 5 GUE quadratic 2 5 21
1 5 GUE quadratic 2 6 21
0 6 GOE linear 1 6 7
1 6 GOE linear 1 7 7
0 7 GOE linear 1 7 1
1 7 GOE linear 1 8 1

We will discuss three arbitrary cases in detail: α = (0, 1, 1, 0, 1, 1, 1, 0),
α = (1, 0, 0, 0, 0, 1, 0, 1), and α = (0, 0, 0, 1, 1, 0, 1, 0). We will not show
the eigenvalue densities for any of these cases since we have found that
they all follow the semicircle law and look much like the density shown in
Fig. 1. However, we remind the reader that the value of β′ must be chosen
appropriately in order for the semicircle law to hold (see Table I). Also,
we emphasize that we have examined all 256 cases noted in Table I with
the same amount of detail as is given below (although, in many cases, with
smaller values of N).
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Shown in Figs. 4, 6, and 8 are the NNSDs for α = (0, 1, 1, 0, 1, 1, 1, 0),
α = (1, 0, 0, 0, 0, 1, 0, 1), and α = (0, 0, 0, 1, 1, 0, 1, 0), respectively. Shown
in Figs. 5, 7, and 9 are the number variances for the same choices of α.
From these studies, it is obvious that the eigenvalues for the case where
α = (0, 1, 1, 0, 1, 1, 1, 0) follow GUE statistics and the eigenvalues for the
case where α = (1, 0, 0, 0, 0, 1, 0, 1) follow GSE statistics.
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Fig. 4. Numerical study (histogram) of the NNSD for unfolded eigenvalues of a
random matrix defined by ω(AN×N ;α), withN = 2000 and α = (0, 1, 1, 0, 1, 1, 1, 0).
The solid, dashed, and dotted curves correspond to the Wigner surmise for the
GOE, GUE, and GSE, respectively.
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Fig. 5. Numerical study (open circles) of the number variance for unfolded eigen-
values of a random matrix defined by ω(AN×N ;α), with N = 2000 and α =

(0, 1, 1, 0, 1, 1, 1, 0). The solid, dashed, and dotted curves correspond to the large-L
analytical forms of Σ2(L) for the GOE, GUE, and GSE, respectively.
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Fig. 6. The same as in Fig. 4 except with α = (1, 0, 0, 0, 0, 1, 0, 1).
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Fig. 7. The same as in Fig. 5 except with α = (1, 0, 0, 0, 0, 1, 0, 1).

However, the eigenvalues of the case where α = (0, 0, 0, 1, 1, 0, 1, 0) clearly
do not follow statistics of any of the classical RMT ensembles and we must,
therefore, describe them otherwise. We initially guess that the statistics are
described by some superposition of two independent eigenvalue spectra each
having either GOE, GUE, or GSE statistics — our intuition is guided by
the appearance of the NNSD (i.e. the histogram in Fig. 8) for which level
repulsion is now absent and P (S) is close to 1/2 as S → 0. More precisely,
if we let fi represent the fraction of levels belonging to the ith component
spectrum, then the NNSD for a superposition of independent spectra is [1]
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P (S) = E(S)

{∑
i

f2i
Pi(fiS)

Ei(fiS)

+

[∑
i

fi
1− Ψi(fiS)
Ei(fiS)

]2
−
∑
i

[
fi
1− Ψi(fiS)
Ei(fiS)

]2}
, (19)

where

Ψi(S) =

S∫
0

Pi(x) dx , (20)

Ei(S) =

∞∫
S

[1− Ψi(x)] dx , (21)

and
E(S) =

∏
i

Ei(fiS) . (22)

Note that
∑

i fi = 1. Based on our numerical experiments, we conjecture
that the eigenvalue statistics for the case where α = (0, 0, 0, 1, 1, 0, 1, 0)
(or more generally, any time that α# = 3; see Table I) are described by
the superposition of two GSEs with f1 = f2 = 1/2. The resulting P (S) is
shown as the solid curve in Fig. 8. To further test our conjecture, we study
the number variance for a superposition of i independent spectra, which is
given by

Σ2(L) =
∑
i

Σ2
β,i(fiL) . (23)

In our present case, we take Σ2
β,1(f1L) and Σ

2
β,2(f2L) to both be given by the

large-L analytical form of Σ2
β=4(L). The result is shown as the solid curve in

Fig. 9. A more refined calculation is shown in Fig. 10, where we use Eq. (12)
for the individual number variances. Note how we now properly describe the
oscillations in the number variance when α = (0, 0, 0, 1, 1, 0, 1, 0).

To summarize, we have numerically studied the eigenvalue statistics of
real adjoints of N × N Hermitian octonion random matrices. A list of pa-
rameters, denoted by α, was used to control the various matrix elements by
turning them OFF or ON. It was shown that when α = (1, 1, 1, 1, 1, 1, 1, 1),
GOE statistics resulted and the NNSD exhibited linear level repulsion — this
is in contrast to 2× 2 random matrices where it is known that the eigenval-
ues exhibit octic level repulsion [21]. Next, we examined the eigenvalues for
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Fig. 8. The same as in Fig. 4 except with α = (0, 0, 0, 1, 1, 0, 1, 0). The solid curve
now represents P (S) as given in Eq. (19) with P1(f1S) and P2(f2S) taken to be
PW(S;β = 4) and f1 = f2 = 1/2. Note that the numerical results are now for an
ensemble average of 40 trials, with N = 2000 for each trial.
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Fig. 9. The same as in Fig. 5 except with α = (0, 0, 0, 1, 1, 0, 1, 0). The solid curve
now represents the number variance given in Eq. (23) with Σ2

β,1(f1L) and Σ
2
β,2(f2L)

taken to be the large-L analytical form of Σ2
β=4(L) and f1 = f2 = 1/2. The dotted

curve still corresponds to the large-L analytical form of Σ2
β=4(L). Note that the

numerical results are now for an ensemble average of 40 trials, with N = 2000 for
each trial. The error in the mean for each L is smaller than the size of the open
circles.
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Fig. 10. The same as in Fig. 9 except that we are now using the Σ2
β=4(L) expression

given in Eq. (12) for Σ2
β,1(f1L) and Σ

2
β,2(f2L). The result, when f1 = f2 = 1/2, is

shown as the solid curve.

all 256 binary choices of α and discovered that the resulting statistics were
described by the GOE, GUE, or GSE, depending on the value of α# (see
Table I). For cases where α# = 3, we observed that none of the Gaussian
ensembles of classical RMT could describe the resulting eigenvalue statistics
and conjectured that they are, in fact, described by the superposition of two
independent GSE spectra — we do not yet understand why this should be
the case. The observations made in this paper are based purely on numer-
ical studies; it would be highly satisfying if one could prove these results
analytically.

The author would like to thank Thomas Guhr for his encouragement
during the final stages of this work and the anonymous referee for a careful
reading of the manuscript.
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