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We study the BPS Skyrme model with potentials breaking the isospin
symmetry and analyse how properties of exact solitonic solutions depend
on a form of the isospin breaking potential. In the case of the strong
symmetry breaking, a new topologic structure is observed which enables
us to decompose a BPS skyrmion into a lower dimensional defect localised
on a brane (kink). We investigate some thermodynamical properties of
such solitons as well as the role of the symmetry breaking potential in the
resulting mean-field equation of state.
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1. Introduction

The Skyrme model [1] is a widely accepted candidate for the effective
model of the low-energy QCD. It is a purely mesonic field theory (U ∈ SU(2))
where baryons and atomic nuclei are not introduced as primary fields but
emerge as non-perturbative excitations i.e., topological solitons with an iden-
tification between topological index Q ∈ π3(S3) and the baryon charge B [2].

After the semiclassical quantization [3], the model describes not only
baryons (proton, neutron, ∆) but also spectra of light nuclei [4, 5]. Quite
recently, it has been also understood how to modify the original proposal in a
way that it can be applied in nuclear physics. It requires to bring the model
close to a BPS theory, which results in a significant reduction of binding
energies of atomic nuclei. Furthermore, such a model should describe a fluid
matter rather than a crystal as it is the case in the simplest Skyrme model.
This can be achieved by addition to the minimal model

LSk = L̃0 + L2 + L4 , (1)
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L2 = −λ2Tr (LµL
µ) , L4 = λ4Tr

(
[Lµ, Lν ]2

)
, Lµ ≡ U †∂µU , (2)

a BPS part (the BPS Skyrme model [6])

LBPS ≡ L6 + L0 ≡ −
(
24π2

)2
λ6BµBµ − λ0U . (3)

It consists of the sextic term L6 — the square of the baryon current

Bµ =
1

24π2
εµνρσTr (LνLρLσ) , B ≡

∫
d3xB0 (4)

(B is baryon number) — and a further potential U , which is assumed not to
change the pion mass provided by the potential L̃0 from the usual Skyrme
part. The main observation is that in the exact BPS limit (the BPS Skyrme
model), one finds a theory which has zero binding energies (at the classical
level) and which is a field theoretical realization of a perfect fluid [7] —
a natural state of matter in nuclear physics. Non-zero physical binding
energies can be obtained again by the semiclassical quantization procedure
and by taking into account the Coulomb interaction as well as the isospin
symmetry breaking [8] (see also [9]). Let us notice that another possibility
of reduction of classical binding energies of skyrmions to the physical values
i.e., the loosely bound Skyrme model [10], can be in a sense included into the
near BPS model. In this approach, low binding energies are obtained by a
suitable modification of the potential, of course, without spoiling the pionic
masses. This potential can be naturally included into the BPS part of the
model. On the other hand, the sextic term is unavoidable to make a close
relation to a perfect fluid. In any case, a particular form of the potential has
a strong impact on physical properties of skyrmions (e.g. binding energies).
Therefore, it is important to further study the role of the potential in the
Skyrme type theories and its impact on geometrical features of the solitons.

Although the complete description of nuclear physics phenomena is ex-
pected to be given by the full near-BPS Skyrme model

L = LSk + LBPS , (5)

and is probably a mutual effect of inclusion of the sextic term (BPS model)
and properly chosen potential (loosely bound model), some (but certainly
not all [11]) features are governed by the BPS part of the model. It is due to
the physical relevance of the BPS limit for nuclear matter, which makes it
reasonable to expect that the masses of skyrmions i.e., atomic nuclei, should
be mainly provided by the BPS part of the model. Hence, the BPS limit can
be still interesting and relevant for some bulk observables. This is important
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since the BPS Skyrme model is a solvable solitonic theory. It provides an
analytical insight into physical properties of higher nuclei, nuclear matter
and neutron stars. For example, the solvability of the model allows for a
beyond mean-field theory description of neutron stars [12] (for gravitating
BPS skyrmions, see also [13]).

The main aim of the present paper is to further investigate some classical
aspects of the BPS Skyrme model and, in particular, to analyse how prop-
erties of solutions are modified if one chooses a potential which breaks the
isospin symmetry. Let us stress that the impact of the symmetry breaking
on pion masses may be understood only in the model which also contains the
usual quadratic term L2. A characteristic kinetic term of the massive pion
cannot be simply obtained via perturbative expansion of the BPS Skyrme
model. For this reason, pionic degrees of freedom (and, consequently, pion
masses) are not well-defined in the BPS limit.

First of all, we break the isospin symmetry in a rather strong man-
ner. The reason for that is that we want to qualitatively understand how
skyrmions reflect the form of the potential rather than to compute some
isospin breaking effects in the nuclear physics. Such strong symmetry break-
ing potentials can deform the target space geometry and lead to new type
topological defects. In particular, we want to check if it is possible to decom-
pose BPS skyrmions into a lower dimensional defects localized on a brane
(domain wall) — as discussed recently in [14–17]. Obviously, such a tar-
get space deforming symmetry breaking has no direct application to nuclear
physics but it is an interesting mathematical phenomenon which can be ana-
lytically studied in the BPS Skyrme model. However, our framework allows
to perform an analytical study of weak isospin symmetry breaking as well.
Such a symmetry breaking possesses a direct application to nuclear physics
if the semiclassical quantization is taken into account.

Secondly, we want to understand how the (weak and strong) isospin
symmetry breaking change thermodynamical properties of matter described
by skyrmions. Specifically, we shall study some modifications of the equation
of state caused by the isospin symmetry breaking.

2. The exact isospin symmetry breaking

The isospin symmetry breaking in the framework of the (BPS) Skyrme
model is accomplished by an assumption that the potential gives different
masses for the pionic, perturbative excitations. As usual, the pions ~π are
introduced as components of the mesonic matrix field

U = σI + i~π · ~τ , (6)
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where we have the constraint

σ2 + ~π 2 = 1 . (7)

Hence, if the potential depends only on σ, that is in the same way on each
component of the pionic degrees of freedom, the isospin symmetry is present.
In the paper, we assume a different parametrisation of the matrix field,
namely

U(x) = eiξ ~n·~τ , (8)

where ξ = ξ(x) is a scalar (profile of skyrmion) and ~n = ~n(x) is a unit three-
component vector field, while ~τ are Pauli matrices and x ≡ (x0, . . . , x3).
Obviously, ~π = sin(ξ)~n and σ = cos(ξ). For convenience, we also use the
standard stereographic projection which expresses ~n by a complex scalar
field u

~n =
1

1 + |u|2
(
u+ ū, −i(u− ū), 1− |u|2

)
. (9)

Using our parametrisation, we can rewrite the BPS Skyrme Lagrangian as

L =
λ2 sin4 ξ

(1 + |u|2)4
(εµνρσξνuρūσ)2 − µ2U . (10)

Here, λ6 ≡ λ2/(24)2 and λ0 ≡ µ2 with λ > 0 and µ > 0. The expression
εµνρσ in (4) and (10) stands for the Levi-Civita tensor εµνρσ = − 1√

−g ε
′µνρσ,

where ε′µνρσ ≡ ε′µνρσ is the antisymmetric symbol with ε′0123 = +1. We have
also adopted a short-hand notation ξν ≡ ∂ξ

∂xν and uρ ≡ ∂u
∂xρ . The BPS model

revels the isospin symmetry breaking if the potential U depends not only on
the profile function ξ but it possesses also a part which is a function of the
complex field

U = U(ξ, u, ū) . (11)

The situation is especially simple if the potential factorises into two terms

U = V (ξ)W (uū) . (12)

Below, we shall explore some situations where the potential factorises as
in (12).

2.1. The BPS equations

It is known that the BPS Skyrme model admits a reduction of the static
field equations to a BPS equation [6, 18, 19]. Namely, the energy takes the
form
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E =

∫
d3x

(
π4λ2B20 + µ2U

)
=

∫
d3x

(
π2λB0 ± µ

√
U
)2
∓ 2π2λµ

∫
d3xB0

√
U

≥ 2π2λµ

∣∣∣∣∫ d3xB0
√
U
∣∣∣∣ = 2π2λµ|B|

〈√
U
〉
S3
, (13)

where the average of the potential on the target space has been introduced〈√
U
〉
S3
≡ 1

2π2

∫
volS3

√
U . (14)

The bound is saturated by solutions of the Bogomolny equation

π2λB0 ± µ
√
U = 0 (15)

which are also solutions of the full static field equations. Note that B0 = B0
in adopted here convention (+,−,−,−) for signature of the metric tensor.
For analysed here the isospin symmetry breaking potential, the Bogomolny
equation can be further decomposed into two decoupled first order equations.
The Bogomolny equation reads

iλ
sin2 ξ

(1 + |u|2)2
1
√
g3
ε′abcξaubūc = ±µ

√
V
√
W , (16)

where a, b = 1, 2, 3 and g3 stands for determinant of a metric tensor in a
3-dim Euclidean space. Equation (16) is decomposed as follows:

iλ
1
√
g2
ε′ij

uiūj

(1 + |u|2)2
= η1α

√
W , (17)

sin2 ξ
1
√
g1
ξk = η2

µ

α

√
V , (18)

where xk is a chosen single coordinate (k — fixed) different from xi, xj

and signs η1, η2 = ±1 have been chosen in a way that η1η2 = ±1 is by
definition equal to the sign on r.h.s. of (16). It follows from separation of
coordinates that √g3 =

√
g1
√
g2, where g2 is determinant of a metric tensor

on a surface parametrized by coordinates xi, i 6= k and √g1 is a Lamé
coefficient associated with a third coordinate xk. An arbitrary constant α
has been introduced in order to find solutions which cover full target space
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and has non-trivial topological charge. Now, if we assume the following
Ansatz for the scalar real and complex functions

ξ = ξ
(
xk
)
, u = u

(
xi, xj

)
, (19)

then the decomposed Bogomolny equations not only imply the full Bogo-
molny equation but also the original second order equations of motion and,
therefore, lead to solutions of the isospin symmetry broken BPS Skyrme
model.

Such decomposition of the Bogomolny equation leads to decomposition
of the energy bound and the baryon topological charge. Indeed,

E ≥ ∓2π2λµ

∫
d3xB0

√
U

= ±2λµ

∫
d3x

i
√
g3
ε′ij

uiūj

(1 + |u|2)2
sin2 ξξk

√
W
√
V

= ±2λµ

(∫
d2x

i
√
g2
ε′ij

uiūj

(1 + |u|2)2
√
W

) (∫
dxk sin2 ξξk

√
V

)
= ±2λµ QS2

〈√
W
〉
S2

〈√
V
〉
, (20)

where

QS2 =
i

2π

∫
d2xε′ij

∇iu∇j ū
(1 + |u|2)2

(21)

is the topological charge of the baby skyrmion QS2 ∈ π2(S2). The symbol
∇i stands for gradient components on the unit sphere. The mean values are
given by integrals 〈√

W
〉
S2
≡ 1

4π

∫
S2

volS2
√
W , (22)

〈√
V
〉
≡
∫

dxkξk sin2 ξ
√
V . (23)

Obviously, the usual non-symmetry breaking case i.e.,W = 1 is also included
into this decomposition. Then, assuming the spherical coordinates (r, θ, φ),
we have ξ = ξ(r) and u = u(θ, φ) = v(θ)einφ. The integer number n has
interpretation of baryon number n ≡ B. The pertinent solution of the W
part reads

u(θ, φ) = tan

(
θ

2

)
einφ (24)
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and requires α = η1nλ/2. Finally, the profile is determined by the equation

1

r2
sin2 ξ

dξ

dr
= η1η2

2µ

nλ

√
V . (25)

It became clear from the above analysis that the energy bound of BPS
skyrmions and the BPS equations, can be naturally decomposed into a col-
lection (superposition) of lower dimensional defects which carry pertinent
topological charges. This is quite similar to cases discussed in [14–17], al-
though the action is different.

3. Examples

3.1. Baby skyrmions on a spherical brane

In this and next two sections, we shall deal with decomposition which
leads to some composite structures containing as ingredients baby skyrmions
i.e. solutions of the Skyrme model in lower dimensions. Such low-dimensional
solutions of the Skyrme model have already been investigated in literature
in the case where physical space is either Euclidean two dimensional space
or a Minkowski (2+1) spacetime, see, for instance, [20].

We shall study a potential which breaks the isospin symmetry, i.e., it is
of the form of U = V (ξ)W (uū), where

V = 1− cos ξ , W =
|u|2

1 + |u|2
=

1

2

(
1− n3

)
. (26)

For axially symmetric Ansatz ξ = ξ(r), u = u(θ, φ) = v(θ)einφ, the BPS
equation can be cast in the form of two ordinary differential equations

2λn
1

sin θ

v vθ

(1 + v2)2
= η1α

v√
1 + v2

, (27)

1

r2
sin2 ξ ξr =

η2
α
µ
√

1− cos ξ , (28)

where ξr ≡ dξ
dr and vθ ≡ dv

dθ . The system of equations (27) and (28) has a
constant solution v = 0 and ξ = 0. In order to find a non-trivial solution
of (27), we choose α = η1λn, then

v(θ) =
tan θ

2 sin θ
2√

1 + sin2 θ
2

. (29)

This solution vanishes at θ = 0 and tends to infinity as θ → π. The solution
of (28) became a compacton

ξ(r) =

{
2 arccos

(
r
R0

)
r ≤ R0

0 r > R0

(30)
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whose radius R0 takes the value

R0 =
3

√
4
√

2λ|n|
µ

, (31)

where in order to get R0 > 0, one has to choose −η1η2 sign(n) = 1. It means
that solution with n > 0 (n < 0) satisfies (16) with −/(+). The solution
saturates the energy bound

E = 2η1η2QS2 〈W 〉S2 〈V 〉 =
128π

45

√
2λµ|n| , (32)

where

QS2 = n , 〈W 〉S2 =
4π

3
, 〈V 〉 = −16

√
2

15
, (33)

and where η1η2 = ±1 corresponds to the sign in (20) and η1η2 n = −|n|. The
energy can be also calculated directly from the energy density E = 2µ2U

E = 2µ2
∫

d2xW

∫
drr2V = 2µ2

(
4π

3

)(
16
√

2

15

λ|n|
µ

)
, (34)

what confirms the result of (32). The potential W (uū) evaluated on the
solution u(θ, φ) is a function of θ ∈ [0, π] given byW (θ) = 1

8 (3− cos θ) sin2 θ.

It takes its maximum value at θ = 2 arctan(
√

1 +
√

2). The profile of W (θ)
is sketched in Fig. 1. Similarly, plugging ξ(r) to V (ξ), one gets a function
V (r) = 2

(
1− r2

R2
0

)
for r ∈ [0, R0]. The energy density vanishes outside this

interval. The complex map u covers the unit S2 sphere once and it has one

Fig. 1. The energy density contribution W (θ) ≡ W (u(θ, φ)ū(θ, φ)). The distance
from the center represents the value of W (θ).



Composite BPS Skyrmions from an Exact Isospin Symmetry Breaking 2253

zero for θ = 0. Therefore, the corresponding axially-depending part of the
energy density tends to 0 as we approach θ = 0 for any r. The resulting
energy density vanishes on a semi-line z ∈ [0,∞) which makes the soliton
similar to a half-doughnut.

3.2. Baby skyrmions on a flat brane

A simple example can be found for the following potential

V (ξ) = 1− cos 2ξ , W (uū) =
|u|2

1 + |u|2
=

1

2

(
1− n3

)
, (35)

where the potential W (uū) takes the most typical form (usually referred as
the old baby potential). It has minimum at u = 0. The potential V (ξ) is the
simplest two vacua Skyrme potential (two vacua on the segment [0, π] which
must be covered as we search for the topological solitons with the baryon
charge i.e., skyrmions).

In cylindrical coordinates x1 = r, x2 = φ, x3 = z, BPS equations (17)
and (18) become

2λn

r

ffr

(1 + f2)2
= η1α

f√
1 + f2

, (36)

sin2 ξ ξz =
η2
α

√
2µ sin ξ , (37)

where u = f(r)einφ and ξ = ξ(z). Equations (36) and (37) have constant
vacuum solutions (u, ξ) = {(0, 0), (0, π)}. The solution of (37) must cover
the interval [0,∞), therefore, we require f(r)→∞ for r → 0. Moreover, the
solution f(r) must reach a zero value, what can be satisfied by the choice
α = −η1 sign(n). The solution of (36) is a compacton having a profile

f(r) =


1− r2

4λ|n|√
1−
(
1− r2

4λ|n|

)2 , r ≤ 2
√
λ|n|

0 , r ≥ 2
√
λ|n|

(38)

and the solution of (37) is a kink (anti-kink) for η1η2 sign(n) = −1 (+1)
respectively. For instance, the anti-kink with topological charge Qk = −1 is
also a compact solution

ξ(z) =


π , z ≤ z0 − 1√

2µ

arccos[
√

2µ(z − z0)] , z ∈
[
z0 − 1√

2µ
, z0 + 1√

2µ

]
0 , z ≥ z0 + 1√

2µ

, (39)
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where z0 is a free constant. The topological charge of the compact baby
skyrmion is given by the integral

Qbs =
i

2π

∫
K(0,R)

d2x
1

r

ε′ijuiūj

(1 + |u|2)2
= −n , (40)

where K(0, R) is a disc with center at r = 0 and the raduis R = 2
√
λ|n|,

whereas the kink/anti-kink topological charge takes the value Qk =
−η1η2 sign(n), where η1η2 = ±1 corresponds to signs in (16) and (20). It
follows that the energy bound reads

E = 2λµ|n|Qk
〈√

W
〉
K

〈√
V
〉

=
32π

9

√
2λµ|n| , (41)

where 〈√
W
〉
K

=
8

3R2

∫
K(0,R)

d2x
√
W =

4π

3
, (42)

〈√
V
〉

=

1√
2µ∫

− 1√
2µ

dz sin2(ξ)ξz
√
V =

4
√

2

3
Qb . (43)

The solution describes a compact baby skyrmion located on a compact
domain wall. Another way to understand this solution is to look at it as
a composition of a Skyrme string (a baby skyrmion with the trivial z de-
pendence) and a Skyrme brane. Both objects, if treated separately, exist as
vacuum solutions of the model (the vacuum manifold of the BPS Skyrme
model is extremely large), so they correspond to zero energy excitations.
However, their bound state has a finite mass.

3.3. Baby skyrmions with a discrete axial symmetry

The model has many interesting solutions when potentialW depends also
on another two components of the iso-vector ~n i.e., n1 and n2. In next two
paragraphs, we present some examples of solutions for such a potential. A
characteristic feature of the considered potential is that the axial continuous
symmetry of the energy density factor W (u, ū) is replaced by a discrete one.

3.3.1. Power function solutions

We shall discuss the following potentials

V (ξ) = 1− cos 2ξ , W (u, ū)=

(
1+n3

2

)4 ∣∣∣∣n1+in2

1+n3
+wn0

∣∣∣∣2(1−
2δ
n )

, (44)
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where δ > 0. We choose cylindrical coordinates and assume that fields
depend on coordinates in the following way: ξ=ξ(z), u=u(r, φ)=f(r)einφ−
wn0 , where w0 = c eiφ0 is a constant complex number with c and φ0 being
real. The term w0 6= 0 breaks down the axial continuous symmetry to a
discrete one. The idea of such non-central potentials was given in [21]. Due
to presence of a constant w0, the potential W is a function of φ too. Indeed,

W (u, ū) =
f(r)2(1−

2δ
n )

(1 + |u|2)4
, (45)

where |u|2 = f(r)2 + c2n− 2cnf(r) cos (n(φ− φ0)). The BPS equations take
the form

2λn

r

ffr
(1 + |u|2)2

= η1α
f1−

2δ
n

(1 + |u|2)2
, (46)

sin2 ξξz =
η2
α

√
2µ sin ξ , (47)

where equation (46) involves, in fact, only a radial coordinate r. For α = η1,
the solution reads

f(r) =

(
δ

2λn2

) n
2δ

r
n
δ . (48)

Note that for δ = 1, the field u became a holomorphic function of a complex
variable reiφ. Unlike the solution in Sec. 3.2, the baby skyrmion found here
is not compact. However, the domain wall being a solution of (47) is still
compact. The domain wall has a form of kink for η1η2 = 1 and anti-kink for
η1η2 = −1 with profile given by function ξ(z) = arccos[−η1η2

√
2µ(z − z0)]

on z ∈ [z0 − 1√
2µ
, z0 + 1√

2µ
].

The bound of the energy is saturated by the BPS solutions and it reads

E = 2µ2
∫
R2

d2xW

∫
dzV = 2µ2

(
4
√

2

3µ

)∫
R2

d2xW . (49)

There are some restrictions on δ originated in requirement of finiteness of
the integral

∫
d2xW , namely, it must hold 0 < δ < 2|n|. Some examples of

the energy density for n = 3 are sketched in Fig. 2 and Fig. 3. The value
of the parameter cn expresses a grade of breaking of the axial symmetry.
For cn → 0, the energy density approaches the axially symmetric one. The
energy density of solutions with n > 0 in the limit δ → 0 coincides with
the energy density of solutions with n < 0 in the limit δ → ∞. For axially



2256 P. Klimas

symmetric configurations (w0 = 0), the integral
∫

d2xW reads∫
d2xW = λ

π3

3

δ

n2
n2 − δ2

sin
(
δπ
|n|

) (50)

and it is independent of sign(n). For δ → |n|, the integral simplifies to
2π
3 λ|n|. When cn is essentially different from zero, the integral

∫
d2xW is

not symmetric with respect to n→ −n. It follows that configurations which
are not axially symmetric and differ only by the sign of n have, in general,
different energies.

Fig. 2. The energy density W (r, φ) for the solution with n = 3 and δ = 0.2 and for
c = 0.1 (left), c = 0.6 (middle), c = 1.0 (right).

Fig. 3. The energy density W (r, φ) for the solution with n = 3 and δ = 3.0 and for
c = 0.1 (left), c = 0.6 (middle), c = 1.0 (right).

3.3.2. Generalization

One can choose a potential W in quite general form, namely

W (u, ū) =

(
1 + n3

2

)4

|ψ|2F 2(|ψ|) , (51)

where F (f) is a non-negative valued function and ψ is defined as follows

ψ ≡ n1 + in2

1 + n3
+ wn0 = u+ wn0 .
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Potential (51) takes the form of

W =
f2(r)F 2(f)

(1 + |u|2)4
, (52)

where, as before, the numerator does not depend on variable φ. It follows
that the BPS equation reduces to two ordinary differential equations

2λn

r
fr = η1αF (f) , (53)

sin2 ξξz =
η2
α
µ
√

1− cos(2ξ) , (54)

where we have skipped the common denominator (1 + |u|2)2 on both sides
of (53). The solution of equation (54) takes the form of a compact kink
which interpolates between vacuum values ξ = 0 and ξ = π, and has a
profile ξ(z) = arccos

[
−η2

α

√
2µ(z − z0)

]
. It is a kink for η2/α > 0 and an

anti-kink for η2/α < 0. The auxiliary parameter α is fixed by requirement
that f(r) covers the whole interval [0,∞).

As an example, we shall consider F (f) in the form of

F (f) = f1−
1
m

√
1 + f

2
m , (55)

where m is a free real parameter. Then, the solution reads

f(r) = sinhm
(

r2

4λ|m||n|

)
, (56)

where α has been fixed as α = η1 sign(m) sign(n). Such a solution is ob-
viously not a power-like function. Many other solutions are possible for
different choice of F (f). Examples of the energy density for solution (56)
are shown in Fig. 4.

Fig. 4. The energy density W (r, φ) for the solution with n = 5 and c = 1.03 and
for (left) m = − 1

2 , (middle) m = 1, (right) m = 1
4 .
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3.4. Skyrmion as a three-brane defect

A solution being an intersection of three-domain walls can be obtained
in the parametrization of U given by

U = I ξ4 + iξaτa , a = 1, 2, 3 , (57)

where one has to impose the condition (ξ1)2+(ξ2)2+(ξ3)2+(ξ4)2 = 1 which
implies U †U = I. There are only three independent scalar fields. One can
parametrise a 3-sphere in a usual way

ξ1 = sin θ1 sin θ2 sin θ3 ,

ξ2 = sin θ1 sin θ2 cos θ3 ,

ξ3 = sin θ1 cos θ2 ,

ξ4 = cos θ1 , (58)

where θ1, θ2 ∈ [0, π] and θ3 ∈ [0, 2π]. The independent fields φ1, φ2, φ3
can be introduced by a stereographic projection of a 3-sphere on a 3-dim
Euclidean hyperplane

~φ ≡

 φ1

φ2

φ3

 =
1

1 + ξ4

 ξ1

ξ2

ξ3

 . (59)

In terms of φa, the fields ξa, ξ4 are given by expressions

ξa =
2φa

1 + ~φ 2
, ξ4 =

1− ~φ 2

1 + ~φ 2
, a = 1, 2, 3 . (60)

The expression Bµ introduced in (4) is given in terms of Lµ ≡ U †∂µU

Lµ = iε′ijk
(
ξi∂µξ

j
)
τk + i

[
ξ4∂µξ

k − ξk∂µξ4
]
τk

=
2i(

1 + ~φ2
)2 [2(~φ× ~φµ) · ~τ +

(
1− ~φ 2

)(
~φµ · ~τ

)
+ 2

(
~φ · ~φµ

)(
~φ · ~τ

)]
,

(61)

where ~φµ ≡ ∂µ~φ and it reads

Bµ =
2

3π2
ε′µναβ(

1 + ~φ2
)6

×
[(

1− ~φ 2
)3 (

~φν × ~φα
)
· ~φβ + 6

(
3 +

(
~φ 2
)2)(

~φ · ~φβ
)(

~φν × ~φα
)
· ~φ
]
.

(62)
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In this section, the coordinates xµ are Cartesian. We shall consider the
Ansatz φa = φa(xa) i.e., each field depends on exactly one spatial coordinate.
It follows that there is only one non-vanishing component of Bµ, namely

B0 =
4

π2
φ′ 1φ′ 2φ′ 3(
1 + ~φ 2

)3 , (63)

where φ′a(xa) ≡ dφa(xa)
dxa . BPS equation (15) takes the following form

4λ
φ′ 1φ′ 2φ′ 3(
1 + ~φ 2

)3 ± µ√U = 0 . (64)

The expression ~φ 2 depends on all three spatial coordinates x1, x2, x3. For
this reason, one can choose the potential in such a way that a common
denominator cancels out on both sides of the BPS equation. A quite general
potential with this property can be chosen in the form of

U =

F1

(
φ1
)
F2

(
φ2
)
F3

(
φ3
)(

1 + ~φ 2
)3


2

, (65)

where functions Fi(φi) ≥ 0 shall be specified below. In such a case, the BPS
equations can be decomposed in three equations, each for one field φa

φ′ 1 = η1αF1

(
φ1
)
, (66)

φ′ 2 = η2βF2

(
φ2
)
, (67)

φ′ 3 =
η3
αβ

µ

4λ
F3

(
φ3
)
, (68)

where α, β > 0 are some auxiliary constants, and signs ηk are such that
η1η2η3 = ∓1. In particular, a symmetric choice has the form α = β =
3

√
µ
4λ . Note that functions Fa(φa) can be chosen in many topologically non-

equivalent ways.
The simplest choice is Fa = const. In such a case, the potential has no

zeros and vacuum manifold is like that for the Skyrme potential. Then, the
solution must cover whole 3-sphere. It is possible if φa interpolate between
−∞ and +∞. For instance, taking Fa(φa) = 1, one gets the solution

φ1 = η1α
(
x1 − x10

)
, φ2 = η2β

(
x2 − x20

)
, φ3 =

η3
αβ

µ

4λ

(
x3 − x30

)
,

(69)
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where xa0 are some arbitrary constants. A picture of the energy density for
such a solution is shown in Fig. 5 (left). The baryon charge defined by
B =

∫
d3xB0 takes the value B = −1 for a considered solution.

On the other hand, when the potential has zeros, the vacuum manifold
is non-trivial. In particular, for appropriate form of potential there exist
kink/anti-kink solutions. An example of such solutions is given for the po-
tential defined by functions

Fa(φ
a) := cos2(φa) , a = 1, 2, 3 . (70)

Then equations (66), (67) and (68) are solved by

φ1
(
x1
)

= arctan
(
η1α

(
x1 − x10

))
, (71)

φ2
(
x2
)

= arctan
(
η2β

(
x2 − x20

))
, (72)

φ3
(
x3
)

= arctan

(
η3

αβ

µ

4λ

(
x3 − x30

))
(73)

which have a form of kinks interpolating between vacua ±π
2 . Topological

charges of kinks are given by some integer numbers Qa = ηa, however, they
have nothing to do with the baryon number B which, in fact, is not any more
a good number because it is not even integer for a considered potential. The
energy density of pertinent solution is shown in Fig. 5 (right). In both
examples, solutions are plotted for the following choice of parameters

η1 = 1 , η2 = 1 , η3 = −1 , λ = 2 , µ = 1 , α = 1
2 , β = 1

3 .

Fig. 5. The energy density as the function of x1, x2 and x3 for a BPS configuration.
Left panel corresponds to the case where potential has no zeros; total energy reads
E = 7

8π
2 ≈ 8.636. Right panel corresponds to potential leading to kinks; total

energy reads E = 5.968.
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4. Pressure and equation of state

For any potential U , the BPS Skyrme model is a field theory describ-
ing a perfect fluid. This means that the energy-momentum tensor has the
characteristic form, which for static configurations reads

T 00 = ε = λ2π4B20 + µ2U , (74)
T ij = p δij =

(
λ2π4B20 − µ2U

)
δij , (75)

where ε and p denote, respectively, energy density and pressure. From the
conservation law of the energy-momentum tensor, we find that the pressure
must have a constant value. Furthermore, as shown in [7], the constant pres-
sure equation is a first integral of the full second order static field equations.
Hence, non-zero pressure solutions for any symmetry breaking potential are
given by the following equation

λ2π4B20 − µ2U = p . (76)

4.1. The isospin symmetry breaking as a continuous deformation
of the potential

The models investigated in previous sections are given from the very
beginning as the models with broken the isospin symmetry. It is particularly
interesting to have the model where the isospin symmetry breaking can be
introduced as a continuous deformation of the model that possesses the
isospin symmetry. For this reason, we shall consider the BPS Skyrme model
with the potential which can be smoothly deformed. In analogy to Sec. 3.1,
we assume dependence of fields on spherical coordinates, namely ξ = ξ(r)
and u = v(θ)einφ. BPS equation (16) can be cast in the form:[

2

sin θ

vθv

(1 + v2)2

] [
λn sin2 ξ

ξr
r2

]
= ±µ

√
W (v)

√
V(ξ) , (77)

where we shall use a letter V for the potential keeping a letter V for the
volume. We shall choose the potentialW (|u|) as the function which depends
on the parameter ε ∈ [0, 1]

W (|u|) = (1 + ε)2 − 2ε
(
1 + n3

)
= (1 + ε)2 − 4ε

1 + |u|2
. (78)

For ε = 0, the potential W = 1, what leads to the model with the presence
of the isospin symmetry. The other extremal value ε = 1 leads to the model
with the potential W = 2(1 − n3) = 4 |u|2

1+|u|2 which has been studied before
in the context of baby skyrmion on a spherical brane. One has to stress the
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fact that potential (78) taken for ε = 1 is qualitatively different from the
other cases ε ∈ [0, 1). The reason is that the value of the potential at the
minimum |u| = 0 is W (|u| = 0) = 0 for ε = 1, whereas W (|u| = 0) > 0 for
ε ∈ [0, 1) so the vacuum manifold is qualitatively different in both cases.

We are interested in solutions v(θ) that satisfy the boundary conditions
v(0) = 0 and v(π) = ∞. In order to simplify equation (77), we define new
variable x := cos θ and new field component w(x) := (1 + v2)−1. The r-de-
pendent component can be simplified with the help of variable z := 2µr3

3λ|n|
and new field ζ(z) := 1

2(ξ − 1
2 sin 2ξ). Equation (77) simplifies to the form

2wxζz = ±sign(n)
[
(1 + ε)2 − 4εw

]1/2√
V(ζ) . (79)

Let us observe that the equation 2wx =
√
W has a solution

w(x) =
1 + x

2

[
1 + ε

1− x
2

]
(80)

which gives

v(θ) =

√
1

w(cos θ)
− 1 , where w(cos θ) = cos2

θ

2

[
1 + ε sin2 θ

2

]
. (81)

Solution (81) becomes v(θ) = tan θ
2 for ε = 0 and v(θ) =

tan θ
2
sin θ

2√
1+sin2 θ

2

for ε = 1

in concordance with our previous considerations, see (24) and (29). Then,
BPS equation (79) takes the form:

ζz = ±sign(n)
√

V(ζ) . (82)

Many particular properties of the solution ζ(z) depend on the choice of the
potential V(ζ). Since we are interested in studying models in presence of
pressure, then we choose the potential V(ζ) = ζβ and compare our results
with those presented in paper [7] in absence of the isospin symmetry break-
ing.

4.2. Non-zero pressure case

When pressure is taken into account, then the BPS equation must be
substituted by the following one

π2λB0 ± µ
√
U + p̃ = 0 , (83)
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where p̃ ≡ p/µ2. One could not expect that for generic situation, there
works any obvious separation Ansatz which allows to reduce equation (83)
to the product of two equations. However, one can check what happens for
the simplest choice i.e., when fields do depend on spherical coordinates in
the following way ξ = ξ(r, θ) and u = v(θ)einφ. Since ~n, or equivalently u,
do not depend on coordinate r, then B0 has the same functional form as for
the case with ξ = ξ(r). The only difference is that ξ(r) is replaced by ξ(r, θ).
In terms of new coordinates x and z, equation (83) becomes

2∂xw(x)∂zζ(z, x) = ±sign(n)
√
W (w)V(ζ) + p̃ . (84)

We shall chose the potential W (w) in the form of (78) and V(ζ) = ζβ in
analogy to [7]. Plugging (80) to (84), one gets equation for ζ(z, x). It has a
form of

∂zζ(z, x) = ±sign(n)

√
ζβ +

p̃

(1− εx)2
(85)

for ε ∈ [0, 1). For ε = 1, the potential W (w(x)) = (1 − x)2 takes the value
zero at x = 1. Consequently, ∂xw = 0 at x = 1 so according to (84), one
can expect singularity in derivative of ∂zζ for p̃ 6= 0. Indeed, such behaviour
of the solution is present, see Fig. 6 (right). We shall impose the following
boundary conditions on field ξ

ξ(r = 0, θ) = π , ξ(r =∞, θ) = 0 , (86)

or equivalently on field ζ

ζ(z = 0, x) =
π

2
, ζ(z =∞, x) = 0 . (87)

Such conditions can be imposed on solution of (85), however, one has to
choose as well signs in a way that ±sign(n) = −1. We shall also fix the
power β = 1 since systematic study of all possible potentials ζβ is out of
scope of this paper. It follows that equation (85) has an exact solution

ζ(z, x) =
1

4

[
2π + z2 − 2z

√
2π +

4p̃

(1− εx)2

]
. (88)

In fact, it is a quite surprising result. In absence of any obvious separation
Ansatz, one would expect merely numerical solutions of resulting PDE for
the model with broken the isospin symmetry, however, we were able to
find an exact solution. Let us comment about one important point related
to this solution. It is important to notice that choice (80) is not unique.
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Since the model has a large symmetry (volume preserving diffeomorphisms),
many alternative solutions can be mapped one to each other using such
transformations. For this reason, we do not have to worry about existence
of multiple choice and just study the simplest one.

Fig. 6. The function ζ(z, x) for p̃ = 0.1 and for (left) ε = 0.1, (middle) ε = 0.5,
(right) ε = 1.0.

It follows that ζ does not depend on x for p̃ = 0 and/or ε = 0. In
similarity to [7], the solution is compact and the border of this compacton
is determined by solution of the equation ζ(Z, x) = 0 giving

Z(x) =
2

1− εx

[√
p̃+

π

2
(1− εx)2 −

√
p̃

]
. (89)

The main difference is that it clearly depends on x for p̃ 6= 0. The radial
coordinate that describes the compacton border behaves as R ∼ 3

√
Z. The

function ζ(z, x) is shown in Fig. 6. For p̃ = 0, the expression Z becomes
Z =

√
2π. For the model with ε = 1, the function Z(x)→ 0 as x→ 1 what

can be seen from Fig. 6 (right) and expansion at x = 1

Z(x) =
π

2
√
p̃

(1− x) +O
(
(1− x)3

)
. (90)

A volume occupied by the compacton is given by the integral over base space

V =

∫
Ω

volR3 =

2π∫
0

dφ

1∫
−1

dx

R(x)∫
0

r2dr =
πλ|n|
µ

1∫
−1

dx

Z(x)∫
0

dz =
2πλ|n|
µ

Ṽ , (91)

where Ṽ ≡ 1
2

∫ 1
−1 dxZ(x), or with help of relations dw√

W
= 1

2dx and
√
Wdζ√
U+p̃ =

−dz, as the integral on target space. In such a case, one gets

Ṽ =

1∫
0

dw

π/2∫
0

dζ√
U + p̃

. (92)
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An explicit expression for Ṽ has the form of

Ṽ =

√
p̃+ π

2 (1 + ε)2 −
√
p̃+ π

2 (1− ε)2

ε
−
√
p̃

ε
ln

[√
p̃+

√
p̃+ π

2 (1 + ε)2
√
p̃+

√
p̃+ π

2 (1− ε)2

]
.

(93)
One can deduce from (93) that the dominant change of a compacton vol-
ume induced by weak ε � 1 effects of the isospin symmetry breaking is
proportional to the second power of the parameter ε

Ṽ =2

[√
p̃+

π

2
−
√
p̃

]
+

[
p̃√
p̃+ π

2

− 2

3

(√
p̃+

p̃2

2
(
p̃+ π

2

)3/2
)]

ε2 +O
(
ε3
)
.

(94)
The second term of expansion is a negative valued function which behaves as
−2

3 p̃
1/2 for small pressure and as −π2

16 p̃
−3/2 for high pressure. The function

has its minimum value ≈ −0.157 for p̃ ≈ 0.309. It follows that for slightly
broken the isospin symmetry, the volume change effects in the order of ε2 are
significant only if pressure is not too high or extremely small. In Fig. 7 (left),
we present difference δṼ = Ṽε− Ṽε=0 which represents the total effect of the
volume change due to isospin symmetry breaking. For the chosen value of
ε, there is virtually no difference between total value δṼ and the second
term of expansion. In Fig. 8 (left), we present the rescaled volume of the
compacton Ṽ in dependence on pressure p̃ and deformation parameter ε.
One can conclude from this picture that in order to maintain a constant
value of compacton volume, one has to decrease pressure as increasing ε.

Fig. 7. (Left) The volume difference δṼ = Ṽε=0.1 − Ṽε=0 and (right) the energy
difference δẼ = Ẽε=0.1 − Ẽε=0 in dependence on pressure p̃.
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Fig. 8. The volume (left) Ṽ (p̃, ε) and the energy (right) Ẽ(p̃, ε) of the compacton.

Let us shortly discuss the energy and the energy density. The energy of
the compacton contains the potential part and the pressure part

E=µ2
∫

d3x(2U + p̃) = 2πλµ|n|Ẽ , where Ẽ= 1
2

1∫
−1

dx

Z(x)∫
0

dz(2U + p̃) .

(95)
In Fig. 9, we present the expression 2U + p̃ which is proportional to the
energy density. The rescaled coordinates x̃k are given by x̃k = 3

√
2µ

3λ|n|x
k.

Clearly, the dependence of the energy density on θ is an effect of the isospin
symmetry breaking. The grade of asymmetry in the diagram grows with
increasing of ε. The compacton border is defined as ζ(Z, cos(θ)) = 0 and,
therefore, the energy density is constant there. The value of this constant
is just p̃ because U = 0 at the border. Energy (95) can be also expressed as
the integral on a target space

Ẽ =

1∫
0

dw

π/2∫
0

dζ
2U + p̃√
U + p̃

, (96)

where integral (96) reads

Ẽ =
1

9ε

[[
π(1 + ε)2 − p̃

]√
p̃+

π

2
(1 + ε)2 −

[
π(1− ε)2 − p̃

]√
p̃+

π

2
(1−ε)2

+ 3p̃3/2 ln

(√
p̃+

√
p̃+ π

2 (1 + ε)2
√
p̃+

√
p̃+ π

2 (1− ε)2

)]
. (97)
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Fig. 9. The expression 2U + p̃ for p̃ = 0.5 and (upper left), (lower left) ε = 0.05,
and (upper right), (lower right) ε = 0.95.

This expression has a following expansion for small values of ε

Ẽ =
2

3

[
p̃3/2 + (π − p̃)

√
p̃+

π

2

]
+

1

9

[
2p3/2 +

π3 + 3πp̃ (π − p̃)− 4p̃3

2
(
p̃+ π

2

)3/2
]
ε2

+O
(
ε3
)
. (98)

The dominant contribution to the energy for slightly broken the isospin
symmetry is proportional to square of ε. The pertinent coefficient is a func-
tion which behaves as

√
3
9 π

3/2 + 2
9 p̃

3/2 for p̃ close zero and as 3π2

16 p̃
−1/2 for

high pressure. It follows that the variation of the total energy caused by ef-
fect of the isospin symmetry breaking is non-negligible if pressure is not too
high. The coefficient proportional to ε2 takes its maximum value ≈ 0.882 for
p̃ ≈ 0.309. The plot of difference δẼ = Ẽε−Ẽε=0 is sketched in Fig. 7 (right).
It becomes a very good approximation of the second term of (98) for ε = 0.1.
The variation of the energy of compacton caused by the isospin symmetry
breaking is less significant for higher pressures. In Fig. 8 (right), we present
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the diagram of rescaled energy Ẽ as a function of pressure p̃ and parame-
ter ε. It follows from the analysis of curves Ẽ = const that increasing of ε
leads to decreasing of pressure.

In Fig. 10, we plot the function Ẽ(Ṽ ). The upper value of Ṽ is limited
by the value

√
2π ≈ 2.506 (p̃ = 0) and the lower value corresponding to

pressure p̃ = 10 changes monotonically between values ≈ 0.478 for ε = 0.01
and ≈ 0.464 for ε = 0.999. Compactons in the model with broken the
isospin symmetry have, in general, higher energy comparing with energy of
compactons occupying the same volume but being solutions of the model
possessing the isospin symmetry. The value of the energy calculated for
fixed Ṽ increases with increasing of ε.

Fig. 10. The energy of the compacton as a function of its volume Ẽ(Ṽ ). From
down to up, the curves correspond to ε = 0.01, ε = 0.55, ε = 0.8, ε = 0.999.

5. Conclusions

In this paper, we have studied the BPS Skyrme model with a poten-
tial which explicitly breaks the isospin symmetry. We have shown that the
strong isospin symmetry breaking gives origin to new type of exact solu-
tions that have a form of composite skyrmions. Such solutions are obtained
from the BPS equation which admits separation in a set of ordinary first
order equations each one for each field. We gave examples of three different
types of such composite structures. In Sec. 3.1, we constructed the compact
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baby skyrmion on a spherical compact brane. The bound state of such two
objects has a finite mass although each one treated separately exists as a
vacuum solution of the BPS model. Other possibilities have been explored
in Sec. 3.2. This composite skyrmion is a composition of a baby skyrmion
located on a compact domain wall. We have shown that the class of such
solutions is very large and, in fact, involves also solutions with azimuthal
angle dependence, Sec. 3.3. It leads to a very interesting situation when the
energy density is not axially symmetric but rather possesses only a residual
discrete axial symmetry. An alternative possibility of having a composite
skyrmion has been explored in Sec. 3.4 where we have constructed such an
object as intersection of three branes. The topological charge of such a so-
lution is B = ±1. We have studied two qualitatively different cases: the
potential has or does not have an additional zero. In the latter case, the
topological charge is given by a baryon number of field configuration and
we found usual BPS skyrmions. On the other hand, when the potential
has new zeros, the vacuum manifold is non-trivially deformed, which can
support some other topological solutions. In our example, each individual
scalar field has a kink (anti-kink) solution. The topological charge of such a
configuration is a product of topological charges of kinks.

All these examples show some similarities with previously known effects,
where, for example, skyrmions have been also constructed as a composite
state of intersecting domain walls [14].

Another problem associated with the isospin symmetry breaking is an
understanding of how this phenomenon affects thermodynamic properties
of composite skyrmions. In particular, we have studied corrections to the
(energy-pressure and volume-pressure) equation of state in the weak and
strong symmetry breaking limit. In a generic case, the symmetry breaking
becomes less significant for higher pressure. This is an expected result as in
the high pressure limit the role of the potential becomes, in fact, immate-
rial, while it is the derivative part (sextic term) which governs the thermody-
namical properties [22]. On the other hand, the symmetry breaking modifies
equation of state close to the equilibrium (P = 0). This may be of some rele-
vance for astrophysical applications of the BPS Skyrme model. For example,
neutron stars mass–radius relation will be very weakly affected by such a
modification of the potential — the weak symmetry breaking contribution
is further suppressed by high pressure.

There are several directions in which the present work can be contin-
ued. First of all, one should go beyond the classical regime and include the
semiclassical corrections together with the Coulomb interaction.

Secondly, one can ask how classical properties of skyrmions depend on
the isospin breaking if the usual (perturbative) pionic part of the model LSk
is included. Furthermore, such a modification of the potential should have
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an impact on dynamical properties of skyrmions as their rotation [23] and
collision [24]. Let us remark that some time-dependent properties of the
BPS skyrmions have been recently studied in [25].

There is also a way to include the medium effects from the isospin sym-
metry breaking. This can be easily achieved by promoting the usual time
derivative to a proper covariant derivative [26]. However, this leads to a
non-BPS theory which probably complicates computations for higher baryon
numbers.

Since physical nuclei do not possess perfect spherical or axial symme-
try, we expect that BPS skyrmions without such symmetries can be more
adequate for a realistic description of nuclear matter. In this sense, the
isospin symmetry breaking seems to qualitatively improve the applicability
of the BPS Skyrme model. Undoubtedly, this should be verified once the
semiclassical effects have been taken into account.
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