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The new Skyrme parameter set is determined by requiring that Vari-
ational Monte Carlo (VMC) calculations reproduce empirical values for
properties of nuclear matter, such as binding energy per particle and satu-
ration density. We found the new Landau parameter set by using the new
Skyrme parameter set, the saturation density, and energy obtained from the
new Skyrme parameter set for symmetric nuclear matter (SNM). Incom-
pressibility of symmetric nuclear matter is also calculated by the described
Skyrme–Landau Parameterization.
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1. Introduction

The knowledge about the nuclear incompressibility of infinite symmet-
ric nuclear matter is very important for models of nuclear many-body sys-
tems. There is no infinite symmetric nuclear matter in nature but its em-
pirical properties such as saturation density and saturation energy are well-
established [1]. Incompressibility of nuclear matter has been studied experi-
mentally and theoretically because of its importance in intermediate energy
heavy-ion collisions, neutron star structure, and supernova explosion calcula-
tions [2, 3]. Correct determination of the nuclear matter incompressibility is
important in order to extend our knowledge on the EOS, because incompress-
ibility is directly related to the curvature of the EOS [2] at the saturation
point (E/A, ρ0) = (−16 MeV, 0.16 fm−3), where E/A, ρ0 are the binding
energy per particle of the nuclear matter and the nuclear matter density,
respectively [4]. To experimentally determine the nuclear incompressibility
is to measure the compressional-mode giant resonances (ISGMR), and the

(183)



184 K. Manisa et al.

isoscalar giant dipole resonance (ISGDR) [5]. In this study, nuclear matter
equation of state [6–10] is determined using the VMC calculations at nuclear
matter ground state condition. A new set of Skyrme parameters is deter-
mined by fitting the results obtained from VMC calculations to the Skyrme
energy density functional by using Vautherin and Brink method [11]. Also,
we have found the new Landau parameter set by using the new Skyrme
parameter set and the saturation point (E/A, ρ0) = (−15.49 MeV, 0.156
fm−3), which were obtained from VMC simulations and the new Skyrme
parameter set, respectively. Finally, we have calculated nuclear matter in-
compressibility using the new Landau parameter set.

2. Calculations

2.1. Interaction potential

The Hamiltonian operator with a two-body interaction potential Vij can
be written as

H = − ~2

2m

∑
∇2
i +

∑
i<j

Vij . (1)

In this paper, we have used first four terms of Urbana potential

Vij = V c + V σ(σiσj) + V τ (τiτj) + V στ (σiσj)(τiτj) (2)

which was proposed by Lagaris and Pandharipande [12]

Vij = V c + V σ(σiσj) + V τ (τiτj) + V στ (σiσj)(τiτj)

+V tSij + V tτSij(τiτj) + V b(L · S)ij + V bτ (L · S)ij(τiτj)

+V qL2 + V qσL2(σiσj) + V qτL2(τiτj)

+V qστL2(σiσj)(τiτj) + V bb(L · S)2 + V bbτ (L · S)(τiτj) . (3)

This is because: (i) The angular momentum operator does not considerably
effect the binding energy because, the infinite nuclear matter is translation-
ally invariant and has a fixed ratio of neutrons and protons. (ii) As the
contributions of latter terms are much smaller than those of the first four,
their effect is smaller than the statistical fluctuations inherent to the Monte
Carlo technique so the inclusion of these terms was pointless.

In Eq. (3), V c, V σ, V τ and V στ depend only on the distance between the
nucleons i and j. In the Urbana potential, each term in Eq. (3) has three
parts

V i = V i
π + V i

I + V i
S (4)

representing long-range (V i
π), intermediate-range (V i

I ), and short-range (V i
S)

interactions. The long-range part of the interaction (V i
π) is nonzero only for

i = στ and is given by
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V στ
π = 3.488

e−µr

µr

(
1− ecr2

)
, (5)

where µ = 0.7 fm−1 is the inverse Compton wavelength for pions. The
intermediate- and short-range parts are

V i
I (r) = Ii

[(
1 +

3

µr
+

3

(µr)2

)
e−µr

µr

(
1− ecr2

)]
(6)

and

V i
S(r) =

Si

1 + e(r−R)/a
(7)

respectively. Values of the potential strengths Ii and Si and the parameters
c,R, a were given by Lagaris and Pandharipande [12].

In order to produce correct saturation behaviour of the SNM, we use
the phenomenological approach assuming the density-dependent term to be
proportional to a short-ranged part of the Urbana potential, and we assume
that the total interaction, including the many-body effects, is of the form of

ν14 + TNI = νπ + νI + νS + νS(αρ)γ , (8)

where ρ is the number density of nucleons. In the above equation, α and γ
are free parameters and adjusted so as to obtain the correct binding energy
and saturation density of SNM.

2.2. VMC

We use a Monte Carlo method which is the same as the one described
by Manisa [8] for nuclear matter. But, we have made our calculations only
for symmetric nuclear matter.

We consider a cubic box of side L containing N nucleons with periodic
boundary conditions to obtain the properties of bulk nuclear matter in the
VMC calculations. The Jastrow-type wave function, which is the trial wave
function, is used in the present study in the form of

Ψj(R) =
∏
i<j

fi(rij)Φ , (9)

whereR is a 3N dimensional vector representing the coordinates of particles,
fi is the two-particle correlation function and Φ is the many-particle wave
function for the system of non-interacting particles. Jastrow suggests that
this correlation function, in general, is an operator function [13]. However, in
most applications, fj is assumed to depend only on the interparticle distance,
rij = |ri − rj |.
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We consider nucleons to be restricted to a cubic box of side L with
periodic boundary conditions, so that the wave number k = 2πn/L and n
is an integer vector. Therefore, we can use plane waves φ(r) = eik r for the
single-particle wave functions of the nucleons in bulk matter. In order to
conserve the rotational invariance of bulk nuclear matter, we perform VMC
calculations only for the numbers of neutrons and protons corresponding to
completely filled energy shells. We assume that the space and spin parts of
the wave function are separable. Under these conditions, choosing a many-
particle trial wave function with

Φ(R) = DP↑DP↓DN↑DN↓ (10)

is quite reasonable because the spin–isospin-dependent parts of the interac-
tion potential are relatively weak. It is also well-known that the expectation
value of the total energy is not very sensitive to small changes in the wave
function. The determinants DP↑, DP↓, DN↑ and DN↓ in Eq. (10) are the
Slater determinants of single-particle wave functions for corresponding spin–
isospin state, then

Ds = det
(
dsij
)
, (11)

where
dsij = φj((r, s)i) . (12)

The nuclear forces are short-ranged and saturate very quickly, thus the radial
distribution function is not expected to have very long-range correlations,
therefore, for the two-particle correlation function fj in Eq. (9), we use a
function in the form of

fj(r) =

[
1

1 + e(r0−r)/a

]t
, (13)

where t, r0 and a are variational parameters. We define a pseudo poten-
tial u(r) for practical reasons such that fj(rij) = exp(−u(rij)), then our
variational wave function becomes

Ψj = exp

(
−
∑
i<j

u(rij)

)
DP↑DP↓DN↑DN↓ . (14)

We sample the 3N dimensional space with the probability distribution

|Ψ(R)|2∫
dR|Ψ(R)|2

(15)

using a random walk created by the usual Metropolis method. The method
given above is a slightly modified version of the VMC method for fermions
defined by Ceperley et al. [14]. They have also discussed in detail the use
of a trial wave function of this form.
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The expectation value of any operator F is then simply the average
value of the operator evaluated for the coordinates of the random walk with
M moves 〈

F̂
〉

=

∫
drΨ∗(r)F (r)Ψ(r)∫

dr|Ψ(r)|2
∼=

1

M

M∑
i=1

F (ri) . (16)

The system total energy is calculated as an average over a sufficiently
long random walk. The contribution of the NN interactions to the total en-
ergy is calculated for interparticle separations up to a cut off distance of L/2.
The pair-distribution function heals quickly and a reasonable approximation
to include the contributions of the pairs farther apart is to assume that the
density of particles is constant outside this interaction sphere, because the
NN interaction is very short ranged [8].

TABLE I

Expectation values of total energies per nucleon for SNM obtained from VMC.

ρ [fm−3] E [MeV] ρ [fm−3] E [MeV] ρ [fm−3] E [MeV] ρ [fm−3] E [MeV]

0.002 0.61924 0.052 −5.00485 0.102 −12.15897 0.152 −15.63549
0.004 0.73213 0.054 −5.31414 0.104 −12.37512 0.154 −15.66047
0.006 0.73030 0.056 −5.62059 0.106 −12.60119 0.156 −15.66082
0.008 0.65873 0.058 −5.95653 0.108 −12.85074 0.158 −15.67435
0.010 0.53485 0.060 −6.27409 0.110 −13.02164 0.160 −15.64010
0.012 0.38577 0.062 −6.56938 0.112 −13.25121 0.162 −15.64427
0.014 0.20620 0.064 −6.87434 0.114 −13.45329 0.164 −15.59988
0.016 0.01624 0.066 −7.18495 0.116 −13.62996 0.166 −15.53583
0.018 −0.19639 0.068 −7.47030 0.118 −13.82540 0.168 −15.45774
0.020 −0.41398 0.070 −7.80354 0.120 −13.99811 0.170 −15.41111
0.022 −0.64605 0.072 −8.07381 0.122 −14.16013 0.172 −15.34850
0.024 −0.90634 0.074 −8.38265 0.124 −14.29569 0.174 −15.24438
0.026 −1.17317 0.076 −8.69098 0.126 −14.47576 0.176 −15.11893
0.028 −1.44427 0.078 −8.95757 0.128 −14.61790 0.178 −15.01022
0.030 −1.71443 0.080 −9.27851 0.130 −14.75263 0.180 −14.88874
0.032 −1.98355 0.082 −9.54943 0.132 −14.89335 0.182 −14.69736
0.034 −2.27223 0.084 −9.81582 0.134 −14.98360 0.184 −14.53823
0.036 −2.57900 0.086 −10.07332 0.136 −15.10848 0.186 −14.39151
0.038 −2.86786 0.088 −10.90227 0.138 −15.22087 0.188 −14.20987
0.040 −3.17150 0.090 −10.65143 0.140 −15.27500 0.190 −13.98354
0.042 −3.46885 0.092 −10.90227 0.142 −15.39959 0.192 −13.77176
0.044 −3.77463 0.094 −11.17932 0.144 −15.47171 0.194 −13.56805
0.046 −4.08746 0.096 −11.41970 0.146 −15.51701 0.196 −13.33062
0.048 −4.40278 0.098 −11.66695 0.148 −15.57704 0.198 −13.07732
0.050 −4.71415 0.100 −11.93084 0.150 −15.61810 0.200 −13.02164
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We must use fully occupied closed shells of plane waves for both neutrons
and protons in order to preserve the isotropy of the system. Thus, the num-
ber of neutrons or protons must be chosen from the set (2, 14, 38, 54, 66, 114, . . .).

The total energies per nucleon obtained from the Monte Carlo calcula-
tions are presented in Table I. It can be seen from the table that we obtain
saturation energy E0 = −15.67 MeV at saturation density ρ0 = 0.158 fm−3
(kF = 1.32 fm−1) from VMC calculations for SNM.

3. The new Skyrme parameter set for nuclear matter

The Skyrme energy density functional H(r̄), which is an algebraic func-
tion of the nucleon densities ρn(ρp), the kinetic energy τn(τp) and spin den-
sities J̄n(J̄p), is given as follows [11]:

H(r̄) =
~2

2m
τ(r̄) +

1

2
t0

[(
1 +

1

2
x0

)
ρ2 −

(
x0 +

1

2

)(
ρ2n + ρ2p

)]
+

1

4
(t1 + t2) ρ

2τ +
1

8
ρ (t2 + t1) (ρnτn − ρpτp)

+
1

16
(t2 − 3t1) ρ∇2ρ+

1

32
(3t1 + t2)

(
ρn∇2ρn + ρp∇2ρp

)
+

1

16
(t1 − t2)

(
J̄ 2
n + J̄ 2

p

)
+

1

4
t3ρnρpρ

+HC(r̄)− 1

2
W0

(
ρ∇̄ · J̄ + ρn∇̄ · J̄n + ρp∇̄ · J̄p

)
, (17)

where ρn + ρp = ρ, τn + τp = τ and J̄ = J̄n + J̄p. In the above equation,
t0, t1, t2, t3, x0 and W0 are Skyrme parameters. The direct part of the
Coulomb interaction in HC(r̄) is 1

2VC(r̄)ρp(r̄), where

VC(r̄) =

∫
ρp(r̄)

e2

|r̄ − r̄′|
d3r′ . (18)

Nuclear matter, which has a fixed ratio of neutrons and protons (ignoring
the Coulomb forces), is a uniform hypothetical system with translational
invariance. When the number of protons and neutrons is the same, the
system is called symmetric nuclear matter. In symmetric nuclear matter
case, we have

ρn = ρp = 1
2ρ , τn = τp = 1

2τ , J̄ − n = J̄p = 0 (19)

and ∇̄ρ = ∇̄ · J̄ = 0, ρ = ( 2
3π2 )k3F, τ = 3

5k
2
F. Thus, from Eq. (17), one can

get the binding energy per particle for symmetric nuclear matter
E

A
=
H

ρ
+

3

5
TF +

3

8
t0ρ

2 +
3

80
(3t1 + 5t2) ρk

2
F , (20)

where TF = ~2k2F/2m is the kinetic energy of a particle at the Fermi surface.
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Dutra et al. [15] present a detailed assessment of the ability of the 240
Skyrme interaction parameter sets in the literature to satisfy a series of cri-
teria derived from macroscopic properties of nuclear matter in the vicinity of
nuclear saturation density at zero temperature and their density dependence,
derived by the liquid drop model in experiments with giant resonances and
heavy-ion collisions. In our previous study [8], the properties of symmetric
and asymmetric nuclear matter, which are the saturation energy, satura-
tion density, incompressibility, pressure and asymmetry energy coefficient
are calculated by the new Skyrme parameter set (SKaan-U14). The SKaan-
U14 Skyrme parameter set is generated by fitting the energy results per
nucleon, which contains 140 energy values obtained from Variational Monte
Carlo (VMC) simulations, to the Skyrme energy density functional [16].
The obtained SKaan-U14 Skyrme parameter set is: t0 = −424.75 MeV fm3,

TABLE II

Expectation values of total energies per nucleon for SNM obtained by the new
Skyrme parameter set.

ρ [fm−3] E [MeV] ρ [fm−3] E [MeV] ρ [fm−3] E [MeV] ρ [fm−3] E [MeV]

0.002 0.73426 0.052 −4.99542 0.102 −12.31211 0.152 −15.48128
0.004 0.93032 0.054 −5.32817 0.104 −12.53497 0.154 −15.49228
0.006 0.98653 0.056 −5.66003 0.106 −12.75078 0.156 −15.49355
0.008 0.95988 0.058 −5.99057 0.108 −12.95939 0.158 −15.48501
0.010 0.87542 0.060 −6.31940 0.110 −13.16067 0.160 −15.46657
0.012 0.74728 0.062 −6.64616 0.112 −13.35448 0.162 −15.43817
0.014 0.58461 0.064 −6.97050 0.114 −13.54069 0.164 −15.39972
0.016 0.39381 0.066 −7.29209 0.116 −13.71917 0.166 −15.35115
0.018 0.17966 0.068 −7.61061 0.118 −13.88979 0.168 −15.29239
0.020 −0.05414 0.070 −7.92576 0.120 −14.05243 0.170 −15.22338
0.022 −0.30465 0.072 −8.23727 0.122 −14.20698 0.172 −15.14403
0.024 −0.56942 0.074 −8.54486 0.124 −14.35332 0.174 −15.05429
0.026 −0.84644 0.076 −8.84826 0.126 −14.49133 0.176 −14.95408
0.028 −1.13395 0.078 −9.14725 0.128 −14.62090 0.178 −14.84334
0.030 −1.43047 0.080 −9.44156 0.130 −14.74194 0.180 −14.72201
0.032 −1.73470 0.082 −9.73099 0.132 −14.85433 0.182 −14.59002
0.034 −2.04546 0.084 −10.01531 0.134 −14.95797 0.184 −14.44730
0.036 −2.36174 0.086 −10.29432 0.136 −15.05276 0.186 −14.29380
0.038 −2.68262 0.088 −10.56780 0.138 −15.13861 0.188 −14.12946
0.040 −3.00724 0.090 −10.83557 0.140 −15.21541 0.190 −13.95421
0.042 −3.33487 0.092 −11.09743 0.142 −15.28308 0.192 −13.76800
0.044 −3.66479 0.094 −11.35322 0.144 −15.34152 0.194 −13.57076
0.046 −3.99637 0.096 −11.60274 0.146 −15.39065 0.196 −13.36245
0.048 −4.32903 0.098 −11.84584 0.148 −15.43038 0.198 −13.14301
0.050 −4.66222 0.100 −12.08235 0.150 −15.46061 0.200 −12.91237
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t1 = −1333.36 MeV fm5, t2 = −232.82 MeV fm5, t3 = 47807.61 MeV fm6,
x0 = 0.96, x1 = 0, x2 = 0, x3 = −0.51 and α = 1.5. In our other study [9],
the equation of state (EOS) of pure neutron matter (PNM) and neutron-
rich matter (NRM) for the realistic Urbana V14 two nucleon interaction was
obtained by using a Variational Monte Carlo (VMC) method.

In this study, we have focused on incompressibility: the symmetric nu-
clear matter Skyrme–Landau. In order to obtain the new Skyrme param-
eter set, we used the Skyrme energy density functional [11] different from
Ref. [16] used in our previous study. The new Skyrme parameter set is
generated by fitting the energy results per nucleon and contains 100 en-
ergy results obtained from VMC calculations to the Skyrme energy density
functional. The new set obtained is: t0 = −561.9948614 MeV fm3, t1 =
−0.185293342 MeV fm5, t2 = 1931.494108 MeV fm5, t3 = −5061.49105 MeV fm6,
and x0 = 51506.8365. Using these new parameters, we obtain satura-
tion energy E0 = −15.49 MeV at ρ0 = 0.156 fm−3 (kF = 1.32 fm−1) for
SNM. These values are in a good agreement with VMC simulation results
(E0 = −15.67 MeV, ρ0 = 0.158 fm−3, kF = 1.32 fm−1) and with our expec-
tations from semi-empirical mass formulas of known nuclei. Various semi-
empirical mass formulas estimate the saturation point of the SNM to have
an energy per particle between −15 and −17 MeV and Fermi momentum kF
in the range of 1.29–1.44 fm−1 [17].

The obtained total energies per nucleon by the new Skyrme parameter
set for SNM are presented in Table II. In Fig. 1, the binding energies (E/A)

Fig. 1. The results for the binding energy of SNM obtained from the VMC calcu-
lations and the Skyrme calculations. Both the VMC calculations and the Skyrme
calculations are shown by various symbols.
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of SNM obtained from VMC calculations along with the new Skyrme calcula-
tions are given. A comparison of VMC results used in fits and energy values
calculated by the new Skyrme parameter set for SNM are also shown. It can
be seen from the figure that values of binding energies obtained by the new
Skyrme parameter set are in a good agreement with the VMC calculations.

4. Incompressibility: Skyrme–Landau parameterization

In general, the Skyrme parameter sets are determined by requiring that
Hartree–Fock (HF) calculations consistently reproduce empirical values for
properties of nuclear matter, such as binding energy, saturation density,
incompressibility, etc. [18]. It is useful to consider the Skyrme interaction
for nuclear matter within the framework of the Landau theory [19, 20]. The
most general Skyrme interaction for nuclear matter applications in Hartree–
Fock (HF) approximation may be written as [18]

v
(
k̄, k̄′

)
= t0(1 + x0Pσ) + 1

2 t1(1 + x1Pσ)
(
k2 + k′2

)
+t2(1 + x2Pσ)k̄ · k̄′ + 1

6 t3ρ+ 1
2 t4ρ

(
k2 + k′2

)
, (21)

where the density-dependent terms represents the two-body reduction of
three-body interactions as in Ref. [11]. This equation leads to non-zero
Landau parameters. The Landau parameters may be identified immediately
by noting in this case that k2, k′2 and k̄ · k̄′ are equal to 1

2k
2
F(1− cos θ). The

parameters t4, x1 and x2 are explicitly zero in Ref. [11]. Equation (21) allows
the independent adjustment of E/A, kF and six Landau parameters. The
density-dependent term in Eq. (21) allows the independent determination of
compressibility of nuclear matter, C.

Using the SKaan-U14 Skyrme parameter set [8], we found a new Landau
parameter set for nuclear matter in our previous study [21]. In this study, in
order to obtain the Landau parameters, we use the following relations: the
generalized Skyrme parameters in terms of the Landau parameters, of E/A
and kF [18]

ρt0 = ρN−10 {(5/6)F0 − (1/15)F1} − (9/5)TkF + 7E/A ,

ρt0x0 = −ρN−10 {(2/3)F0 + 2F ′0 + (2/3)F1 + 2F ′1} ,
ρk2Ft1 = −ρN−10 {(20/3)F0 + F ′0 +G0 + 3G′0 + (2/3)F1}−2TkF−10E/A ,

ρk2Ft1x1 = 2ρN−10 {(2/3)F0 + F ′0 +G0 + (2/3)F1 + 2F ′1} ,
ρk2Ft2 = ρN−10 {F0 − F ′0 −G0 + 5G′0} ,

ρk2Ft2x2 = ρN−10 {2F
′
0 + 2G0 − 4G′0} ,

ρ2t3 = ρN−10 {F0 + (14/5)F1}+ (18/5)TkF − 14E/A ,

ρ2k2Ft4 = ρN−10 {(5/3)F0 − (2/3)F1} − (2/3)TkF − (10/3)E/A , (22)
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and the two constraints

G1 = −{(2/3)F0 + F ′0 +G0 + (2/3)F1 + F ′1} ,
G′1 = −{(1/3)F0 +G′0 + (1/3)F1} , (23)

where ρ = 2k3F/3π.
Using the new Skyrme parameter set obtained from the VMC simula-

tions, E/A = −15.49 MeV and kF = 1.32 fm−1, we find the new Landau pa-
rameter set: F0 = 5.055, F ′0 = 3.011, G0 = 2.324, G′0 = 4.402, F1 = 12.053,
F ′1 = −8.379, G1 = −8.361, G′1 = −10.104. These new Landau parameters
provide demands of HF approximation(

F0 + F ′0 +G0 +G′0 + F1 + F ′1 +G1 +G′1
)

= 0 . (24)

The obtained new Landau parameters from the new Skyrme parameter
set are given in Table III together with those obtained from the other Skyrme
interactions. Detailed information on the density dependence of the Landau
parameters can be found in Ref. [15].

TABLE III

Landau parameters for different Skyrme parameter sets with this study. SI, SII
and SIII are from Refs. [11, 16], BLV1 is from Ref. [22] and SL1 is from Ref. [23].

SI SII SIII SGI SGII BLV1 SL1 This study

0.558 −0.058 0.30 −0.246 −0.225 0.423 −0.393 5.055
−0.266 −1.261 −0.711 −1.184 −0.645 −0.608 −1.335 12.053
1.213 0.695 0.868 0.436 0.726 0.944 0.435 3.011
0.43 0.477 0.490 0.174 0.520 0.546 −0.603 −8.379
−2.268 −0.769 −1.576 0.069 0.011 −1.913 −0.211 2.324
0.430 0.477 0.490 1.052 0.611 0.546 1.109 −8.361
−0.527 −0.037 −0.354 0.498 0.503 −0.484 0.240 4.402
0.430 0.477 0.490 0.367 0.431 0.546 0.336 −10.104

The compressibility of nuclear matter may be expressed simply in terms
of these dimensionless Landau parameters as

C = 6
~k2F
2m

(1 + F0)

1 + F1/3
. (25)

Using the obtained new Landau parameters from the new Skyrme pa-
rameter set, we found the incompressibility K = 273 MeV. Unfortunately,
there is no sufficiently decisive experimental constraint available for nuclear
matter incompressibility [24]. The incompressibility appears in some sophis-
ticated mass formulas, however, it cannot be precisely determined from these
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formulas, and quoted values in the literature have a wide range from 240 to
300 MeV with error estimates of ±50 MeV [25]. Considering the error bars
in the quoted experimental values, the obtained incompressibility of nuclear
matter by using the new Landau parameters might be acceptable.

5. Conclusion

The dependence of the total energy per nucleon on the density of nuclear
matter is called the nuclear EOS. The EOS is of fundamental importance
in the theories of nucleus–nucleus collisions at energies where the nuclear
matter incompressibility K comes into play as well as in the theories and
supernova explosions.

Here, we have presented: (i) the results of a VMC simulation of the
SNM using Urbana potential, (ii) a new Skyrme parameter set found to
consistently reproduce empirical values of the saturation density and bind-
ing energy of nuclear matter obtained from VMC calculations, (iii) a new
Landau parameter set for nuclear matter obtained for the new Skyrme pa-
rameter set, (iv) finally, nuclear matter incompressibility determined using
the new Landau parameter set.

To sum up, in this paper, we have presented nuclear matter incompress-
ibility using Skyrme–Landau parameterization with VMC calculations.
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