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RADIATIVE CORRECTIONS IN BOUND STATES∗
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We give a brief overview of the recent progress in the computation
of QED radiative corrections for various processes involving bound states.
Precision measurements of bound state properties, such as the Lamb shift
of hydrogen atom and g-factor of a bound electron, and searches for rare
transitions, such as Bs → µ+µ− or muon–electron coherent conversion,
allow for a precise tests of the Standard Model. A comparison between
the theory and the experiment cannot be done without the knowledge of
the higher order effects, which sometimes receive unexpected enhancement
factors.
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1. Introduction

Various bound states involving electrons, muons, and quarks offer op-
portunities to test the Standard Model (SM) and can lead to a discovery of
new physics signal [1]. Working with the bound states comes at a cost of
more complicated theoretical description than the one used for typical scat-
tering experiments. The bound states introduce new, dynamically generated
scales; e.g. in hydrogen atom, the momentum αme and energy α2me of the
electron are dynamically generated. In addition, the usual perturbative ap-
proach based on Feynman diagrams breaks down. Typically, a certain class
of diagrams has to be resummed to obtain the leading order prediction; e.g.
so-called ladder diagrams need to be resummed in hydrogen atom to obtain
the leading Lamb shift at O(α(Zα)4).

Modern effective field theory (EFT) methods offer simplifications that
allow computing bound state properties in a systematic way. Once the scales
that appear in a given problem are separated, the EFT is constructed such
that only operators with a well-defined power-counting appear.
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In this proceedings, we are going to give some examples of the recent
computations of the QED corrections in QED and QCD bound states. Typ-
ically, these corrections reveal unexpected enhancement factors and their ef-
fect is larger than it is estimated by naive power-counting. We shall consider
two cases of observables. The static ones are those related to asymptotic
properties of the bound state like, for example, energy levels of a hydrogen
atom. On the other hand, when the bound particles decay, then dynamical
observables appear, for example, decay width of the system or spectrum of
daughter particles.

2. Static observables

First, we focus on the static observables, such as energy levels of the
hydrogen or the gyromagnetic factor of the bound electron. Computation
of the radiative corrections to the energy levels of the hydrogen spectrum
has a long history, starting from the famous computation of Bethe [2]. The
self-energy corrections to the energy of the ground state of a hydrogen atom
can be represented as a double series in α

π that is related to the number of
photon loops and in Zα that parametrizes binding corrections. Some terms
in the expansion are additionally enhanced by logarithms of Zα
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For the most recent values of the known coefficients, see CODATA [3]. Log-
arithmic enhancement appears when an ultra-soft photon with momentum
k ∼ meZα is exchanged or when the matrix element of an effective operator
is divergent.

Coefficient B61 has been computed in [4, 5]. However, the so-called light-
by-light (LBL) contributions (see Fig. 1) were not included in these works.
It turns out that LBL diagrams contribute to the matching on some of the
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The first two operators contribute to the B61 coefficient because the expec-
tation value of the electric field squared ~E2 ∼ 1

r4
is divergent in S-states of

the hydrogen. This is an example of a logarithmic contribution not induced
by the ultra-soft photons. The LBL corrections computed in [6] decrease
the 1S–2S energy splitting in hydrogen by 280 Hz, a value much larger than
the experimental precision [7].
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Fig. 1. An example diagram with light-by-light contribution to the Lamb shift. The
leading contribution is α2(Zα)5 and the subleading term α2(Zα)6 is logarithmically
enhanced.

The last operator in Eq. (2) is spin-dependent. It affects the bound
electron g-factor at the order of α2(Zα)4, as predicted by the velocity power-
counting rules. The correction affects the electron mass determination [8, 9]
and comparison between the theory and the experiment. It is also important
because of the recent improvements in the theory of the bound g-factor
[10–12] that greatly reduce the theoretical error. This new results facilitate
tests of the SM and improvement in determination of fundamental constants,
such as atomic electron mass and α. At present, the free electron g − 2 is
used to determine α, but in the future, the bound electron g-factor may
serve as a new, more precise source of α [13]. This will allow to use accurate
electron g − 2 experiments to test the theory [14] and thus provide a check
of the persisting muon g − 2 anomaly [15–18].

The EFT methods can be also used to construct new observables that
can disentangle short- and long-distance physics [19] and shed some light
on the so-called proton radius problem [20]. In the light of the anticipated
progress of the experiments, the careful checks and improvements in the
theory of the hydrogen spectrum must be performed.

3. Dynamical observables

A spectrum and decay rate of a bound particle are typical examples of
dynamical observables. The binding potential may be of the QED origin,
like in the case of muonium or muonic atoms; or in the case of mesons, the
QCD may be responsible for the binding.

3.1. Decay of muonic atoms

For the bound muon, the spectrum needs to be accurately predicted to
match the precision of upcoming experiments that will search for muon–
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electron conversion [21, 22]. Observation of the conversion will be a clear
signal of new physics. The dominant SM background in conversion searches
is the so-called muon decay in orbit (DIO). The leading QED radiative
corrections to the DIO spectrum have to be evaluated numerically [23] and
using effective field theory methods [24–26]. The dominant corrections are
enhanced by the large collinear logarithm of the ratio of the muon mass mµ

to the electron massme. The bound state physics generates dynamically also
logarithms of Zα that can be explained as running of the electromagnetic
coupling constant α up to the non-perturbatively generated scale mµZα.

The corrections to the muon–electron conversion are also important be-
cause they reduce the number of electrons expected within the experimental
signal window by several percent. Radiation of real photons reduces the
electron energy and modifies the leading order conversion spectrum
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where Emax is the conversion energy and W (Ee) is the non-universal part
of the correction. It depends on the electron energy Ee and details of the
interaction that induces conversion. This part is not enhanced and can
be neglected in the upcoming conversion searches. The definition of the
“plus” distribution can be found in [27]. The correction to the spectrum is
dominated by the collinear logarithm. The bound state logarithm of Zα
modifies only the total conversion rate Γ0. Formula (3) contains only the
leading term in Zα expansion and, therefore, it predicts the spectrum with
an accuracy of about 1% near the endpoint, much better than required by
the upcoming experiments at Fermilab and J-PARC.

3.2. Decay of mesons

The QCD bound-states require a different approach than the QED bound-
states. In the case of mesons, photons can be regarded as probes of the QCD
structure of the confined quarks. Ultra-soft photons decouple from electri-
cally neutral mesons, however, photons with wavelengths shorter than the
size of the meson can resolve constituent quarks and probe their wave func-
tion. In the following section, we illustrate this mechanism on the example of
recently computed power enhanced QED corrections for the leptonic decay
of Bs meson [28].
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A decay rate of a strange B meson into a pair of leptons is under excep-
tionally good theoretical control because the final state is purely leptonic.
This means that the QCD interaction can be parametrized in terms of a
decay constant alone at the leading order in QED because the QCD matrix
element is local. Moreover, the decay is helicity suppressed in the Standard
Model and, therefore, it is very sensitive to scalar currents generated by the
beyond the SM physics.

Once the QED interactions are considered, the QCD matrix element
cannot be parametrized in terms of the decay constant alone. Virtual and
real photons can couple to quarks, hence a non-local time-ordered product
of electromagnetic current and weak interaction Lagrangian have to be con-
sidered. Typically, these non-local matrix elements are hard to compute
with the standard perturbative and non-perturbative methods, but in cer-
tain cases, the matrix element can be simplified due to a hierarchy of scales
that allows employing EFT methods.

The appropriate EFT for the Bs → µ+µ− is heavy quark EFT com-
bined with the soft-collinear EFT. It is obtained after decoupling of several
scales: electroweak [29, 30] Λ ∼ mW , hard Λ ∼ mb and hard-collinear
Λ ∼

√
mbΛQCD. The dynamical degrees of freedom are soft-quark fields and

collinear lepton fields. Soft photons are already decoupled from the collinear
fields. The decay rate can then be computed as a systematic expansion in
λ = (

ΛQCD
mb

)
1
2 . For the counting purpose, we also take mµ ∼ ΛQCD.

The expansion of the leading order partonic amplitude starts at O(λ2)
because of the helicity suppression factor. Interestingly, the expansion of
the amplitude at the order of α starts at O(λ0). The power enhancement of
the correction is a result of “non-local annihilation”. At the leading order in
QED, the helicity flip and annihilation must occur at the same point, hence
we refer to this situation as the “local annihilation”. Beyond the leading
order, this may not be the case. The annihilation and helicity flip may
be separated by a light-like distance. The local hadronic matrix element
〈0| q̄(0)Γhv(0) |B̄s(p)〉 is replaced by a non-local matrix element

〈0|mb

∫
dx−q̄(x−)Γhv(0) |B̄s(p)〉 (4)

that can be parametrized in terms of the light-cone distribution amplitude.
The separation cannot be arbitrarily large, the meson size provides a natural
infra-red cut-off ∼ 1

ΛQCD
, hence the higher order amplitude is enhanced with

respect to the tree-level by a factor mb
ΛQCD

.
The one-loop decay amplitude, shown in Fig. 2, can be computed using

expansion by regions or by explicit computation. A SCET computation is
particularly interesting as it reveals the origin of the correction. The starting
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point is a SCETI current [31] matched on the weak effective Lagrangian. The
current may contain hard-collinear quark field, rather than a soft field and,
therefore, it is enhanced with respect to the leading operator by two powers
of λ. To obtain non-zero overlap with the Bs, the hard-collinear quark must
be converted into a soft quark. A hard-collinear field scales like λ, while the
soft field scales like λ3 and for that reason, subleading SCETI interactions
must be used.

b

q̄
γ

ℓ̄

ℓ

Fig. 2. A diagram contributing to the QED corrections to the decay rate of a strange
meson, Bs → µ+µ−. An exchange of a photon between the leptons and the light
quark leads to the correction that is power enhanced with respect to the tree-level
contribution.

In order to reproduce terms suppressed by the muon mass mµ, we must
consider subleading SCET collinear interactions of O(λ)

L(1)m = mµξ̄

[
i /D⊥,

1

in+D

]
/n+
2
ξ , (5)

where ξ is collinear muon field. The light-cone coordinates are defined like in
[31]. Remembering that interactions between soft and hard-collinear quarks
start at the order of λ, we note that (5) gives the leading power contribu-
tion. The Lagrangian L(1)m contains muon field with opposite chirality as
opposed to the leading power collinear interaction that does not flip chi-
rality. Hence, terms obtained from L(1)m insertions do not require further
helicity suppression. Terms obtained from the O(λ) interaction between
soft and hard-collinear quarks and the leading power collinear interaction
vanish by reparametrization invariance and so no further power-enhanced
terms appear.

Explicit computation reveals additional logarithmic enhancements [28].
This changes the life-time by about 1%, exceeding the previous estimates
[30]. Theoretical uncertainty of the Bs → µ+µ− decay rate is expected to
be further reduced in a near future with a new QCD lattice computation
of the B-meson decay constant and more precise determination of other
parameters. This makes the evaluation of the QED correction important for
the comparison of theory with the upcoming precise measurements.
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4. Conclusions

Precise experiments searching for the new physics require a good theoret-
ical understanding of the SM contribution. Recent computations of different
corrections in bound states revealed unexpected enhancements and required
to reexamine existing results. Upcoming experiments will require even more
precise predictions, but systematic progress is possible thanks to modern
EFT methods. Spectroscopic measurements allow to determine precisely
fundamental constants and test the SM. Experiments operating at higher
energies can directly probe potential new interactions in rare processes. In
both cases, progress on the experimental side must by accompanied by better
theoretical predictions. The QED corrections are an important ingredient
of the precise SM computations, as shown by the examples invoked in this
paper.

I thank Christoph Bobeth for useful comments and discussions. This
work is supported by the DFG Sonderforschungsbereich/Transregio 110
“Symmetries and the Emergence of Structure in QCD”.
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