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During the last several years, remarkable progress has been made in
numerical calculations of dimensionally regulated multi-loop Feynman di-
agrams using Mellin–Barnes (MB) representations. The bottlenecks were
non-planar diagrams and Minkowskian kinematics. The method has been
proved to work in a highly non-trivial physical application (two-loop elec-
troweak bosonic corrections to the Z → bb̄ decay), and cross-checked with
the sector decomposition (SD) approach. In fact, both approaches have
their pros and cons. For multidimensional integrals, depending on masses
and scales involved, they are complementary. A powerful top–bottom ap-
proach to the numerical integration of multidimensional MB integrals is
automatized in the MB-suite AMBRE/PlanarityTest/MBtools/MBnumerics/
CUBA. New key elements are: a dedicated use of the Cheng–Wu theorem
for non-planar topologies and of shifts and deformations of the integra-
tion contours. An alternative bottom–up approach starting with complex
1-dimensional MB integrals, based on the exploration of steepest descent
integration contours in Minkowskian kinematics, is also discussed. Short-
and long-term prospects of the MB method for multi-loop applications to
LHC- and LC-physics are discussed.
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1. Introduction

Historically, the concept of Feynman diagrams for the first time was pre-
sented by Feynman at a special by-invitation-only meeting at the Pocono
Manor Inn in Pennsylvania in 1948 as an alternative to procedures of per-
turbative calculations in QED [1, 2]. The idea was systematically treated
first by Dyson in his two seminal papers [3, 4] followed by Feynman him-
self1 [5, 6]. The integrals which stand behind the diagrams are, together
with a renormalization procedure, in the core of the technical difficulties,
which increase with the number of “legs” and “loops”, and scales involved
in calculation of contemporary QCD and electroweak processes. It is clear
that steady progress in particle physics needs new ideas and crafting ever-
changing theoretical tools and techniques of calculations.

In the following, the MB-suite will be described in some detail. It com-
prises several tools for dimensionally regulated Feynman integrals in the
momentum space: (i) Transform them into Feynman integrals expressed
by Feynman parameters (textbook knowledge); (ii) Use the proper version
of the AMBRE package [7–10] controlled for automation procedures by the
PlanarityTest.m package [11, 12] — transform them into the Mellin–Barns in-
tegrals, valid at initial parameters which include a finite shift ε of dimension,
d = 4−2ε, and with original integration paths parallel to the imaginary axis;
(iii) Use MB.m or MBresolve.m [13, 14] — perform an analytical continuation
in ε, approaching small ε and (iv) — expand the Mellin–Barnes integrals as
series in small ε; (v) Use barnesroutines.m from the MBtools web page [15] —
perform simplifications using Barnes lemmas. (vi) At this stage, the original
representation of the Feynman integral in terms of several finite MB integrals
has been formulated. One may now start to calculate them, either analyt-
ically or numerically, or in a mixed approach. In sufficiently complicated
situations, only numerics can be applied. (vii) Use MBnumerics.m [16] to
perform parametric integrations of the MB integrals along the paths defined
in step (iii), thereby applying a variety of techniques: integration variable
transformations, reparameterizations, contour deformations, contour shifts
and whatsoever. For the parameter integrations, CUHRE of the package
CUBA [17] is used. To some extent, we gave descriptions of details before
[9, 18, 19].

In this article, we focus on the purely numerical approaches to Feyn-
man integrals developed in last few years beyond one-loop (NLO) perturba-
tion. We show the first completed and non-trivial application in cutting-edge
physical calculations using the MB-suite followed by further perspectives. In
general, one is faced in numerical calculations with several technical obsta-
cles. There are infrared singularities. We know about two methods to treat

1 That is why initially it was being called the Feynman–Dyson approach to QED.
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them properly without limitations. One is the MB method, the other one
sector decomposition [20, 21], which is also numerical. We focus here on the
MB method, aiming at direct calculations in Minkowskian kinematics, which
presents serious convergence problems but is crucial for production processes
at high-energy accelerators such as LHC and LC. No doubt that armed with
powerful fast, stable, accurate and universal software, direct numerical calcu-
lations will become possible for practical applications on “mass production”,
similarly as it happened at the NLO level2, see FeynArts/FormCalc [35, 36],
CutTools [37], Blackhat [38], Helac-1loop [39], NGluon [40], Samurai [41], Mad-
loop [42], GoSam [43], PJFry [44], OpenLoops [45] and [46–49].

2. Numerical concepts beyond NLO level

Fully numerical techniques for the evaluation of two- and higher-loop in-
tegrals need the extraction of ultraviolet, infrared and collinear singularities.
On top of that, they must be numerically stable and efficient. A qualita-
tive comparison of different numerical integration techniques for Feynman
parameter integration of massive multi-loop integrals can be found in [50–
53]. The main methods are dispersion relations, the Bernstein–Tkachov
method, differential equations, the use of subtraction terms, the SD and
MB methods. Here, we will discuss the last two, specifically focusing on
MB. There are presently only few public programs for the numerical inte-
gration of integrals beyond the NLO level. NICODEMOS [54] is based on
contour deformations. There are also complete programs dedicated specif-
ically to the precise calculation of two-loop self-energy diagrams [55, 56].
However, the most advanced and universal programs are based on the SD or
MB approaches: Sector decomposition, developed in two independent pack-
ages (present versions) Fiesta 4 [57] and SecDec 3 [21] followed by pySecDec
[58]; the Mellin–Barnes method with the AMBRE project (construction of
MB representations [7–10]) and PlanarityTest.m (recognition of planarity of
Feynman diagrams [11, 12]) packages, followed by the MB.m [13] and MBre-
solve.m [14] packages for extraction of ε-singularities in dimensional regu-
larization of MB multiloop integrals. They offer also possibilities of numer-
ical integrations in Euclidean kinematics, which is relatively simple as no
physical branch cuts are present there. It was used intensively in the past

2 To solve the integrals, analytical methods can be used, though they exhibit natural
limitations when sophisticated integrals with many parameters appear. Such a sit-
uation takes place in gauge theories, like in the electroweak-QCD Standard Model.
However, concerning analytical approaches to Feynman integrals, we should espe-
cially appreciate recent progress in differential equation method [22–25], which got a
push in 2013 [26] followed by latest corresponding software and ideas [27–32]. Here,
further progress in developing integration-by-parts (IBP) concepts is also very im-
portant [33, 34].
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to cross-check numerically analytical results for multiloop integrals. In the
next section, we will discuss new ideas which enable us to perform numerical
MB integrations directly in the physical region.

3. Numerical integrations of MB integrals
in the Minkowskian region

The Mellin–Barnes transformation of multidimensional Feynman inte-
grals to multivariable complex contour integrations [59, 60] has been used in
many particle physics calculations. In the first applications [61, 62] this kind
of transformation has been applied directly to propagators in the loop inte-
grals, changing “momenta2–mass2” terms into ratios of momenta and masses
in the complex plane. Nowadays, a more efficient and systematic treatment
of multiloop integrals goes by expressing Feynman integrals by the Symanzik
polynomials F and U [63–65], for which the general MB formula is applied

1

(A1 + . . .+An)λ
=

1

Γ (λ)

1

(2πi)n−1

c1+i∞∫

c1−i∞

dz1 . . .

c2+i∞∫

c2−i∞

dz2 . . . dzn

n∏

=2

Azii

×A−λ−z2−...−zn1 Γ (λ+ z2 + . . .+ zn)

n∏

i=2

Γ (−zi) . (1)

As we can see, n additive terms lead to n− 1 complex integrals. The Ai
terms correspond to kinematical parameters of the integral. A typical simple
example is the 1-dimensional singular part of the 1-loop massive QED vertex
[9, 13, 66] ∼

∫
dz(−s)−zΓ 3(−z)Γ (1 + z)Γ−1(−2z). Choosing properly the

contour of integration can make the annoying oscillatory behavior of the term
(−s)−z small and controllable (for s > 0, so Minkowskian kinematic [9, 18]).
Furthermore, the Gamma functions Γ exhibit singularities either, and make
the task of integral evaluations highly non-trivial.

The construction of MB integrals through Symanzik polynomials is au-
tomatized in the AMBRE project [7–10]. Using it with MB.m or MBresolve.m,
IR and UV divergencies can be extracted and regulated multidimensional
MB integrals are obtained [67]. On the webpage [15], more auxiliary pack-
ages with examples related to MB calculations can be found.

The first serious trial directed to the numerical integration of MB inte-
grals in Minkowskian space-time was undertaken in [68]. The method devel-
oped there is based on simultaneous rotations of integration paths for all vari-
ables by the same angle in the complex plane and has been applied success-
fully to the calculation of two-loop diagrams with triangle fermion subloops
for the Z → bb̄ formfactor [69]. Another interesting numerical application of
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MB integrals for phase-space integrations can be found in [70] and [71, 72].
There some parametric integrals are considered and transformations of MB
integrals into Dirac delta constraints have been explored.

Now, we will present recent developments. First, we describe a top–
bottom approach, in which the MBnumerics.m package deals with multidi-
mensional MB integrals; it was first described partly in [9] and applied in
[19]. Another bottom–top approach is at the exploratory stage; optimal
complex contours of MB integrations are worked out systematically for one-
dimensional MB integrals [66].

3.1. Top–bottom approach — shifts, deformations and MBnumerics.m

As we can see from (1), Gamma functions are there [60]. In Fig. 1, the
real part of the Γ [z] function is sketched. It is regular at positive Re[z] and
has singularities for integer negative Re[z].
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Fig. 1. Gamma function defined as Γ (z) =
∫∞

0
tz−1e−tdt, x = Re[z]. For more

details, see [73, 74].

Note also that at the negative axis between the pole positions, the inte-
grand becomes smaller in its absolute value for the function evaluated at an
argument further away from the origin. In addition, for a pole crossed by an
argument shift, one has to add to the Cauchy integral (1) the corresponding
residue which, by itself, is also an integral, but will have a dimension less
than the original one. Repeating the procedure for several integration vari-
ables, the original MB integral gets replaced by several lower-dimensional
integrals, and the original one with a shifted integration path. In the end,
the (module of the) resulting contribution of the original integral after shifts
can be made smaller than the desired accuracy of the calculation. In effect,
the procedure constructs a sum over a finite number of residues with a con-
trolled remainder. This procedure of shifts is implemented in MBnumerics.m
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[16]. Some other important features of the procedure such as contour defor-
mations and mappings of parameter integrals into finite intervals have been
discussed in [9, 18]. Figure 2 sketches roughly the idea.
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Fig. 2. A possible scenario for the calculation of some 8-dimensional MB integral.
Lower dimensional MB integrals result from shifting complex variables of the in-
tegral by integers, as explained in the text. In [19], all integrals of dimension less
than 5 were calculated this way with MBnumerics.m [16] and high accuracy, the
remaining integrals were treated with the same accuracy by the SD method. How-
ever, as a basic cross-check, less digits could be obtained for all integrals using both
methods.

In the project [19], we derived Mellin–Barnes representations for all in-
tegrals, which had up to eight dimensions. For a cross-check, each integral
was computed with MB and SD techniques. There are only few classes of
diagrams for which eight digits could not be achieved with both methods, an
example is given in Fig. 3; for further discussion, see [9, 18]. These diagrams
have high order divergences and an application of the sector decomposition
approach leads to numerical problems related to both accuracy and time
consumption. In contrast to this, the corresponding MB integrals can be
computed with reasonable computer time resources.

Typically, for integrals which involve many masses, SD fits better while
the MB method works out perfectly for more “massless” diagrams. Thus,
the MB-suite and the sector decomposition techniques are, to a large extent,
complementary [8] and both numerical methods can be successfully explored
together in cutting-edge physical problems.
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Fig. 3. Examples of diagrams appearing in the calculation of sin2 θbeff [19] for which
MB and SD methods have been applied. The MB representations have up to
4-dimensional integrals, to be taken at the Z boson mass shell, s = M2

Z . A nu-
merical accuracy at the level of O(10−8) was achieved for them only with the MB
approach. For a general s-dependence, the situation is the same.

In [19] for MB and planar diagrams, the newest version AMBRE v2.1
[10] is used, for non-planar diagrams it is AMBRE v3.1 [10]. The planarity
of diagrams is controlled automatically with the PlanarityTest.m package
[11, 12]. Numerical results have been obtained using MBnumerics.m [16].
As it is demonstrated in Fig. 2, the shifts accumulate at each new iteration
many residues, until the desired accuracy is reached. It is worth noting that
the integration error of MBnumerics.m is mostly dominated by the collection
of residues which have fast convergence. For higher-dimensional integrals,
MBnumerics.m collects more residues. The resulting error from all residues
is determined by Pythagorean addition. In Fig. 2, the two-sided arrows with
label “0” denote pairs of residues which are identified to finally exactly can-
cel. To identify such pairs to a high accuracy, MBnumerics.m performs the
integration of the corresponding candidates at a different kinematical point
where a high numerical accuracy is reached. If then the integrals agree up
to a sign, MBnumerics.m sums them up to zero. This is only one example of
many numerical problems which have been solved in the MBnumerics.m algo-
rithm in order to get highly accurate numerical results in the Minkowskian
region. The package is yet under development, and our present estimation
is that in the near future, even 12-dimensional MB integrals can be touched
— e.g. pentaboxes.
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3.2. Bottom–top MBDE approach — optimal steepest descent contours

In a nutshell, this is a stationary phase method leading to optimal steep-
est descent integration contours. They can be found using Lefschetz thimbles
(exact contours) or their Padé approximation [66].

Lefschetz thimbles (LT) are a fascinating subject, crossing many issues
such as behaviour of LT in presence of poles, singularities and branch cuts,
behaviour in the complex infinity, Stokes phenomenon, relation to relative
homology of a punctured Riemann sphere, etc. It can be applied e.g. to
the analytical continuation of 3d Chern–Simons theory, QCD with chemi-
cal potential, resurgence theory, counting master integrals or the repulsive
Hubbard model. Still, applying this method to the numerical evaluation of
MB integrals is at the exploratory stage, and an effective and general de-
termination of multivariate MB contours must be worked out yet in more
detail.

In this section, we present the main idea as an alternative approach to the
numerical computation of MB integrals, starting from the bottom, the lowest
one-dimensional MB integrals, in both Euclidean (s < 0) and Minkowski
(s > 0) regions. These cases have been explored in fine details in [66].

Let us write a general MB integrand F (z), transformed into exponential
form3

I(s) =
1

2πi

∫

C0

dz F (z) =
1

2πi

c0+i∞∫

c0−i∞

dz e−f(z) . (2)

C0 is a contour defined by Re z = c0, while f(z) = − lnF (z).
One of the possible ways to get rid of numerical problems with the MB

integrand F (z) which is of highly-oscillatory behaviour [9] is to integrate (2)
over a new contour C = J1 +J2 +A. A typical example is sketched in Fig. 4
where C is a sum of three contours J1, J2 and A along which the behaviour
of f is under control.

Taking f = Re f + i Im f , we deform the original integration contour C0
to a Lefschetz thimble J (z∗)

∫

C0

dz e−f =

Overall factor︷ ︸︸ ︷
e−i Im f |J (z∗)

Damping factor︷ ︸︸ ︷∫

J (z∗)

dz e−Re f +

Remnants︷ ︸︸ ︷
2πi

∑

C0→J (z∗)

Res e−f . (3)

The analytical formula describing Jk can be found only in the simplest
cases by explicit solving the equation Im f = const. Instead, we use the
fact that the function Re f defines a Morse flow [75, 76]. Such a flow is

3 For brevity, we suppress the dependence on s and shall use F (z) instead of F (s, z).
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realized by a parametrization t 7→ z(t) of Jk(z∗) in a form of Lefschetz
thimbles [77–82]. The Lefschetz thimble J (z∗) is defined as a union of curves
t → z(t) = (z1(t), . . . , zi(t), . . . , zn(t)) ∈ Cn which satisfy the following
differential equation [78, 81]:

dzi(t)

dt
= −

(
∂f(z)

∂zi

)∗
, z(+∞) = z∗ . (4)

Here, z∗ is a saddle point of a meromorphic function f . The crucial observa-
tion is that for J (z∗) we can take Im f = const, leading to the overall factor
in (3). Note that Im f generates a Hamiltonian flow on R2n, e.g. for n = 1,

dx(t)

dt
=
∂Im f

∂y
,

dy(t)

dt
= −∂Im f

∂x
. (5)

The Re f is monotonically decreasing when t → +∞ and goes to +∞
when t→ −∞, leading to the damping factor in (3).
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C−1C−2

J1

J2

z(1)∗

z(2)∗

z0

A

0−1−2−3

Re(z)

Im(z)

Fig. 4. A deformation of the integration contour C0 defined by Re z = c0 to a
contour C = J1 + J2 + A. J1,2 are two Lefschetz thimbles which start at saddle
points z(1,2)

∗ and go towards infinity. The compact contour A (interval) connects
the two saddle points z(1)

∗ and z(2)
∗ . When there is an obstruction in deriving the

parametrization of J1,2 around some point, e.g. z0, one can bypass that region
using the contour A. Note that here a deformation C0 → C requires taking into
account integrals over two “small” contours, C−2 and C−1 around poles at z = −2

and z = −1 which contribute to
∑

ResF in (3).
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Remnants in (3) are, according to Cauchy’s theorem, residues over poles
when the integration contour is deformed from C0 to C and encircles extra
poles of F = e−f , as shown in Fig. 4. In this way, (4) gives a possibility to
solve for z(t) such that integral (3) is under control. As J1,2, we choose such
stationary phase contours which start at saddle points z(1,2)∗ and go towards
infinity without hitting other poles. Both contours are chosen such that Im f
is constant along them and function Re f is strictly increasing when one
moves away from z

(1,2)
∗ . Varieties defined in such a way are called steepest

descent contours [83, 84]. Usage of J1,2 allows to control the behaviour of
f(z), when z → ∞. Because Re f is strictly increasing, the integrand e−f
decreases rapidly at the ends of J1,2. That transforms integral (2) into a
form which is more suitable for a numerical treatment.

With respect to various methods known in the literature [9, 13, 52, 68]
which shift/rotate contours or use approximate forms thereof, the MBmethod
which relies on the differential equation (4), in short the MBDE method, re-
lies on deriving the numerical parametrization z(t) of Jk as a solution of the
differential equation (4) and then, again numerically, integrating the func-
tion e−Re f along the contour C composed of Lefschetz thimbles Jk (and the
compact contour A if necessary). The purely numerical approach MBDE is
complementary to the Padé approximation presented in [66].

Let us shortly discuss numerical features of the MBDE method and dis-
play results of some performance tests. We stress that the tests are prelimi-
nary, implemented directly in Mathematica, in graphical mode, on an i7 2.9
GHz CPU. Both kinematical regions s < 0 and s > 0 are treated in the
same way in MBDE, although s > 0 seems to be more CPU time consuming.
For a final accuracy of the order of 10−6, the method is as fast as MB [13]
and MBnumerics [9, 16], while for an accuracy of 10−11 and higher, MBDE
turns out to be more than 10 times slower than the other two packages; see
Table I. To get a precision of the order of 10−16, some kind of optimization

TABLE I

Performance tests of MBDE for the integrand F1(z) = (−s)−zΓ 3(−z)Γ (z + 1)/
Γ (−2z). The relative error δan is defined as δan = |(Ian − IMBDE)/Ian|. Ian is
the analytical value of the integral I1(s), IMBDE is the numerical value of this inte-
gral evaluated with the MBDE method. Finally, TMBDE,MB,MBnum display runtimes
(in seconds) needed to numerically evaluate an integral using MBDE, MB.m and
MBnumerics.m (with default settings), respectively.

s IMBDE − log10 δan TMBDE[s] TMB[s] TMBnum[s]

−1/20 4.96× 10−2 6/9/11 1.31/2.48/16.94 1.43 1.16
1 + i0± −1.21 6/11 15.05/53.19 — 1.28

5 4.30 + 14.05i 10 13.5 — 1.57
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of the method is needed. Presumably, it can be made much faster by im-
plementing in e.g. Fortran or C/C++ or by applying a dedicated method of
solving differential equations. Parallelization or dividing integration regions
into smaller parts to achieve larger precision are also possible options.

4. Summary and outlook

In the last few years, substantial progress was obtained in the direct cal-
culation of multiloop integrals (Feynman diagrams) in the physical, Minkowski
regime using both the SD and MB methods. The methods are complemen-
tary in several respects. In the MB case, the most advanced is the top–
bottom approach implemented in the MB-suit, where multidimensional MB
integrals can be solved in physical kinematics with high accuracy for MB
integrals of dimension eight and below. Potential applications of the dis-
cussed numerical methods are complete 2-loop electroweak pseudoobserv-
ables needed for future linear colliders — multi-massive 2-loop vertices, and
also non-resonant two-loop box diagrams, and complete cross sections, in-
cluding LHC problems [68].

Using numerical methods, we are approaching automation in calculation
of Feynman integrals beyond the NLO level directly in physical kinematics.
The perspectives are robust, concerning both high- and low-energy physics.
Seemingly, the “NNLO revolution” is emerging, quite similar to the NLO
revolution of the last decade.
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