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We study the effect of confining potentials, generated by different equi-
librium (long-time asymptotic or terminal) probability densities, on non-
Gaussian stochastic processes, described by Lévy–Schrödinger semigroup
dynamics. The former densities belong to the family of so-called M-Wright
functions of index ν. Using analytical and numerical arguments, we demon-
strate that properly tailored confining potentials can generate the Gaussian
distribution (which is also a member of M-Wright family at ν = 1/2) at
final stages of time evolution. This means that the Gaussian distribution
(and other sufficiently fast decaying distributions like exponential one) can
emerge in the differential equation with fractional derivatives, which nor-
mally produces the heavy-tailed, slow-decaying probability densities. We
discuss the physical implications of the results obtained, for instance, in
the evolution of magnetic resonanse lineshapes for complex, multi-peaked
resonant lines.
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1. Introduction

The differential equations containing fractional derivatives are very con-
venient to describe the dynamics of probabilistic systems. The main point
here is that standard techniques for solving partial differential or integral
equations also apply to fractional equations. These equations are usually
solved for probability density functions (pdf) or quantities directly related
to them. The ubiquity of Gaussian and non-Gaussian random walks in the
Nature makes them a subject of intensive studies in mathematics [1–3],
physics [3, 4], chemistry [4], economy [5, 6], biology and earth sciences [7–9].

(1607)
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In general, the temporal evolution of the above complex systems deviates
from the corresponding standard laws described, for example, by ordinary
Fokker–Planck equations, see, e.g. [10] for recent review. The advancement
of experimental techniques (like resonant spectroscopies, see below) makes
these deviations more accessible and by this virtue, it becomes possible to
deduce the physical laws governing the random motions.

Dealing with the diffusion processes, involving fractional derivatives, one
usually arrives at the so-called generalized diffusion equation

∂tθ(x, t) = −Hθ(x, t) , (1)

where θ(x, t) is interpreted as a wave function (related to the pdf of a system,
see below) and H is a Hamiltonian operator, which will be defined explicitly
below. The latter means that, apart from the absence of imaginary unit
in time derivative, the generalized diffusion equation can be regarded as
Schrödinder-type one. In its turn, the Hamiltonian operator is a generator
exp(−tH) of the dynamical Lévy–Schrödinder semigroup, see Ref. [1] for
detailed mathematical explanation of this concept. We note that asymmetric
(i.e. one-sided or defined either on positive or negative real semiaxis) stable
processes cannot be transformed into a semigroup dynamics [11]. That is
why here, we will use the symmetrized semigroup potentials, defined as even
functions in the whole real axis.

The common knowledge about fractional derivatives is that they generate
the heavy-tailed, non-Gaussian pdfs, especially in the dynamical patterns.
Namely, even if the initial (at t = 0) pdf is Gaussian, the final stages of its
time evolution yield the pdfs with only finite number of moments in existence
(see, e.g. [12, 13]). Contrary to that here, we show that the proper choice
of external potential in the above generalized diffusion equation generates
Gaussian pdf as the large time asymptotics of the fractional diffusion.

For that we employ a so-called one parametric (with parameter 0 ≤
ν ≤ 1) M-Wright family of the pdfs [14, 15]. At 1 ≤ ν < 0.5, the sym-
metrized M(|x|)-Wright family functions have two-peak shape, resembling
the letter M, hence the name. This family, in turn, is the special case of two-
parametric Wright function, which had been introduced by British mathe-
matician E.M. Wright [16–18] in the asymptotic theory of partitions. The
function we are interested in can be defined by following power series [15]:

Mν(z) =

∞∑
n=0

(−1)nzn

n!Γ [1− ν(n+ 1)]
, (2)

where Γ (s) is gamma-function [19] and z is, generally speaking, a complex
variable. In subsequent discussion, we will be interested in the symmetrized,
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even version Mν(|x|) of functions (2), where x ∈ R is real. For special values
of ν, functions (2) can be expressed through the known functions

M0(|x|) = e−|x| , M1/2(|x|) =
1√
π
exp

[
−x

2

4

]
,

M1(|x|) =
1

2
[δ(x− 1) + δ(x+ 1)] . (3)

We plot the family Mν(|x|) in Fig. 1. The characteristic M-like shape at
ν > 0.5 is clearly seen. We can also see the evolution from exponential
function with cusp (due to symmetrization) at ν = 0 through Gaussian at
ν = 0.5 to two-peaked δ function, shown in the inset. Below, applying
the Lévy targeting method elaborated earlier [20], we use function (3) to
construct semigroup potential and hence the dynamic relaxation patterns.
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Fig. 1. M-Wright family of functions Mν(|x|) for different values of ν, shown in the
main panel as figures near curves. The inset reports the function M0.96(|x|), which
is close to two-peaked δ function. The vertical scale is much larger then that for
smaller ν.

The renewed interest to the M-Wright family of the functions [14, 15]
is related to the fact that, along with Mittag–Leffler function [15] (see also
Ref. [21], where the interrelation between two functions is discussed), it is
the solution of the equation

∂αu(x, t)

∂tα
= Dα

∂2u(x, t)

∂x2
, Dα > 0 , 0 < α ≤ 2 , (4)

which represents the ordinary free (i.e. without external potentials) diffusion
equation, where the first time derivative is substitituted by fractional (of the
order of α) Caputo (or Riemann–Liouville) [14] one
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∂αu(x, t)

∂tα
=


∂nu(x,t)
∂tn , α = n ∈ N ,

1
Γ (n−α)

t∫
0

(t−t′)n−1−α ∂nu(x,t)
∂tn dt′, n−1 < α < n .

(5)

In Eq. (4), Dα is also a sort of diffusion coefficient with dimensions cm2/secα.
In this case, the solution of equation (4) can be represented either in

terms of Mittag–Leffler or M-Wright functions, see Refs. [14, 15, 21] for
details. As in equation (4) the spatial derivative (ordinary Laplacian) is left
intact, this equation can be regarded as Brownian motion like process with
distinctive (due to substitution of the ordinary time derivative by fractional
one) dynamics. The main feature of such dynamics is nonlinear (sub- or
superlinear) time growth of a spatial variance of corresponding pdf. The
term “time-fractional diffusion” in this case is attributed to, say, super- and
subdiffusions, see Ref. [1]. In pinciple, one may use the Lévy targeting
strategy of Ref. [20] to the studies of dynamics, governed by equation (4)
in the (properly chosen, see below) external potentials. Interesting question
is also an interplay between fractional time and spatial derivatives in the
above dynamics in the external potentials. We postpone the discussion of
these questions to the future publications.

In the present paper, we show that albeit functions (2) appear as the solu-
tion of equation (4) with time-fractional derivative (5), they can be well-used
in the above Lévy–Schrödinder semigroup framework, which describes dis-
continuous, jump-type processes [1]. This permits to represent the targets
of the corresponding motion in terms of Mν(x) functions family. Below, we
show that as a result of the semigroup dynamics, the initial two-peak distri-
bution, almost equal to M1(x), relaxes either to Gaussian pdf M1/2(|x|) or
to exponential one M0(|x|). This is the case for the dynamics of inhomoge-
neously broadened magnetic resonance spectral lines (see, e.g. [22]), which
we are going to study in detail in future publications. The other physically
important examples where M-Wright family can be used are listed in the
final part of the paper.

2. General formalism

To make the dynamics set by Eq. (1) explicit, we define the Hamiltonian
operator in the Lévy–Schrödinger form

H ≡ Hµ = λ|∆|µ/2 + V(x) , (6)

where λ > 0 is the so-called intensity parameter of the Lévy process (see,
e.g. Ref. [12]). Here, we consider the nonlocal fractional generalization of
the ordinary Laplacian −|∆|µ/2, 0 < µ < 2, defined as (see, e.g. [23])
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−|∆|µ/2f(x) = Aµ

∫
R

f(y)− f(x)
|x− y|µ+1

dy , (7)

where the normalizing constant Aµ is given by

Aµ =
Γ (1 + µ) sin πµ

2

π
. (8)

Note that integral in (7) is understood in the sense of its Cauchy principal
value, see Ref. [20] for details. For −Hµ to be a legitimate generator of a
dynamical semigroup [24], the external potential V(x) should be bounded
from below [24].

Looking for stationary solutions of the semigroup equation (1) with
Hamiltonian (6), we see that if a square root of a terminal (final, invari-
ant) pdf ρ∗(x) realizes the long-time (t → ∞) asymptotics of semigroup
dynamics, then the resulting fractional static Sturm–Liouville equation

Hµρ1/2∗ ≡ λ|∆|µ/2ρ1/2∗ + Vρ1/2∗ = 0 (9)

generates following compatibility condition in the form of V(x) [12, 20]

V(x) ≡ Vµ(x) = −λ
|∆|µ/2ρ1/2∗ (x)

ρ
1/2
∗ (x)

. (10)

The semigroup dynamics with potential (10) gives a solution for the so-
called targeting problem, with the target being the predefined terminal pdf.
On the other hand, defining a specific potential V(x), we infer the invariant
pdf ρ1/2∗ (x) from the static equation (9). This problem is called reverse
engineering problem [25]. Here, we will consider the targeting problem for
terminal pdfs belonging to above M-Wright family of functions.

To derive the explicit expressions for Vµ(x) for different terminal pdfs
ρ∗(x), we use the Fourier technique, which is appropriate for the case of
unbounded motion. The detailed derivation of the corresponding formulas
can be found, for instance, in Ref. [26]. Their result is that the Fourier image
of our fractional derivative (7) is |k|µ.

We first derive the potential Vµ(x) for the Gaussian terminal pdf, related
to M1/2(|x|). Its explicit form reads

ρ∗(x) =
1

2
M1/2(|x|) =

1

2
√
π
e−

x2

4 . (11)
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Note that coefficient 1/2 before M1/2(|x|) has been chosen for ρ∗(x) to be
normalized to unity, i.e.

∞∫
−∞

ρ∗(x)dx = 1 . (12)

The Fourier image of square root ρ1/2∗ = (2
√
π )−1/2e−x

2/8 reads

f(k) =

(
4

π

)1/4

e−2k
2
. (13)

Substitution of Eq. (13) into the integral for inverse Fourier image generates
the following form of semigroup potential:

VµG(x) = −λ
√

2

π
ex

2/8

∞∫
−∞

|k|µe−2k2e−ikxdx , (14)

which finally yields (see also Ref. [20]), where the case of Gaussian with
arbitrary variance σ has been considered

VµG(x) = −
2−

µ
2

√
π
Γ

(
µ+ 1

2

)
1F1

(
−µ
2
;
1

2
;
x2

8

)
, (15)

where 1F1(. . . ) is a confluent hypergeometric function, see Ref. [19]. Note
that expression (15) can be obtained also explicitly, i.e. without Fourier
technique, from the integral

∞∫
−∞

e−
y2

8 − e−
x2

8

|x− y|1+µ
dy =

∞∫
−∞

e−
(x−y)2

8 − e−
xx

8

|y|1+µ
dy

= 2−
3µ
2 Γ

(
−µ
2

)
1F1

(
µ+ 1

2
;
1

2
;−x

2

8

)
,

which is more laborius in computation as we should observe the Cauchy
principal value for it.

In Fig. 2, we report the plots of VµG(x) (15) for µ ∈ {0, 0.5, 1.0, 1.5, 2.0}.
It is seen that at µ = 0, VµG(x) = −1 as it follows from definition (10).
Really, at µ = 0, the derivative of zeroth order gives the function ρ

1/2
∗ (x)

itself, which cancels out with the denominator of fraction in Eq. (10). As
µ < 1 grows, the potential has the shape with flat bottom and steep walls. It
is always limited from below, as should be for “correct” semigroup potential.
At µ > 1, the growth becomes slower and finally at µ = 2, it arrives at
parabolic asymptotics
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Fig. 2. (Colour on-line) Potential VµG(x) for Gaussian terminal pdf (11). Here,
λ = 1 and values of Lévy index µ are shown in the legend.

Vµ=2,G = −1

4

(
1− x2

4

)
.

The latter asymptotics can be easily obtained either from definition (10),
where we have second derivative in this case, or from (15), where hypergeo-
metric function 1F1(−1, 1/2, x2/8) reduces to second Hermitian polynomial
H2 [19].

Next, we derive the expression for the semigroup potential VµE for the
exponential pdf

ρ∗(x) =
1

2
e−|x| , (16)

stemming from the symmetrized density, generated by the functionM0(|x|) =
e−|x|. Once more, the normalization to unity (12) is respected. The Fourier
image f(k) for ρ1/2∗ = e−|x|/2/

√
2 reads

f(k) =
1

2
√
π

∞∫
−∞

e−|x|/2eıkxdx =
2√
π

1

1 + 4k2
. (17)

In this case, VµE(x) assumes the following integral form:

VµE(x) = −2λ

π
e|x|/2

∞∫
−∞

|k|µ cos kx
1 + 4k2

dk =
λ

π
e|x|/2

[
π

2µ cos πµ2
cosh

x

2

+
Γ (µ− 1) sin πµ

2

xµ−1
1F2

(
1,

{
1− µ

2
,
3− µ
2

}
,
x2

16

)]
. (18)

Integral (18) has been calculated in Mathematica; 1F2(. . . ) is a generalized
hypergeometric function [19].
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The plots of potential (18) for λ = 1 and different µ are shown in Fig. 3.
We pay attention here that since function (18) has removable divergencies
at µ=0, 1 and 2, we calculate the corresponding dependences for µ=0.001,
0.9999 and 1.9999, respectively. It is seen that for µ = 0, similar to the
case of Gaussian function, the potential V0(x) = −1, while for µ = 2, we
have correct asymptotics V2(x) = 1/4. Panel (a) shows that at each µ,
except exactly 0 and 2, the potential has cusp-like peculiarity near x = 0.
This peculiarity is due to modulus sign (“nib-like” shape near x = 0) in the
terminal pdf (16), see also Fig. 1. We note here that contrary to the case of
Gaussian terminal pdf (11), the asymptotics at µ = 2 is constant similar to
the common case µ = 0.
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Fig. 3. Potential VµE(x) for exponential terminal pdf (16) at λ = 1 and different
values of µ, shown in panel (b). Panel (a) reports the details at relatively small x,
while panel (b) shows the general shape of the potential.

3. Large |x| asymptotics of the semigroup potentials

To verify the consistency of our Lévy targeting approach, it is instruc-
tive to check analytically the spatial asymptotic behaviour of the target pdfs
ρ∗(x), given by expressions (11) and (16). Both pdfs, similar to other mem-
bers of Mν(x) family, can be considered as ground states of operator (6).
Using this property, the authors of Ref. [27] (see also [28]) arrived at the
following general asymptotic relation:

(ρ∗)1/2(x→∞) ∼ 1

Vµ(x)|x|1+µ
, (19)

where Vµ(x) is the above semigroup potential.
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To derive the asymptotic relations for our terminal pdfs ρ∗(x), we can use
the methodology of Sec. III of Ref. [27]. It uses the fact that the functions√
ρ∗(x) form ground state of operator (6), which should exist as the potential
Vµ(x) is unbounded from above. However, the more profitable way is to
derive relation (19) explicitly via the asymptotics of semigroup potentials,
corresponding to each of our final pdfs (11) and (16).

We begin with Gaussian pdf (11). For that, we use following asymptotic
relation for confluent hypergeometric function [19]:

1F1(a, b, z →∞) ≈ Γ (b)

Γ (a)
za−bez .

Applying this expression to potential (15), we obtain

1F1

(
−µ
2
;
1

2
;
x2

8

)∣∣∣∣
x→∞

≈
√
π ex

2/8 23(1+µ)/2

Γ (−µ/2)|x|1+µ
. (20)

On the other hand, from Eq. (11), we have

ex
2/8 =

1

π1/4
√
2
√
ρ∗
. (21)

Substitution of asymptotic expression (20) with respect to Eq. (21) into (15)
yields (lower index G stands for “Gaussian”)

VµG(x→∞) ≈ − π1/4

Γ (−µ) cos πµ2 |x|1+µ
√
ρ∗(x)

. (22)

Expression (22) renders immediately to the desired form of asymptotics for
the Gaussian target pdf

(ρ∗)
1/2
G (x→∞) ≈ − π1/4

Γ (−µ) cos πµ2 |x|1+µVµG(x)
. (23)

We notice that as Γ (−µ) cos πµ2 < 0 for 2 < µ < 0, quantity (23) is positive
as it should be. We see that our method gives not only the leading term
of asymptotic expansion (19), but also the coefficient before it. To derive
expression (22), we use the following relation for Γ functions [19]:

Γ ((1 + µ)/2)

Γ (−µ/2)
=

√
π 2−(1+µ)

Γ (−µ) cos πµ2
.

Now, we consider the asymptotics of exponential pdf (16). It turns out
that, similar to the calculation of the semigroup potential (18), this case is
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more mathematically intricate then that for Gaussian target. For instance,
there is no simple asymptotic formula for hypergeometric function 1F2(. . . ).
To calculate the large x asymptotics in this case, we make the substitution
kx = t in integral (18), which yields (lower index E stands for “exponential”)

VµE(x) = −
2λ

π|x|µ+1
e|x|/2

∞∫
−∞

|t|µ cos t
1 + 4 t

2

x2

dt . (24)

At x→∞, the main term of integral (24) reads

VµE(x→∞) ≈ − 2λ

π|x|µ+1
e|x|/2

∞∫
−∞

|t|µ cos tdt

=
4µλ

π

e|x|/2

|x|µ+1
Γ (µ) sin

πµ

2
. (25)

The integral
∫∞
−∞ |t|

µ cos tdt exists because of presence of trigonometric func-
tion in it. It is calculated by infinitesimal shift of the variable t to the com-
plex axis t → t + iδ with subsequent limit δ → 0. Similar to the case of
Gaussian pdf, here e|x|/2 = 1/

√
2ρ∗, which gives

(ρ∗)
1/2
E (x→∞) ≈ 2

√
2µλ

π

Γ (µ) sin πµ
2

|x|1+µVµE(x)
. (26)

Expression (26) represents the desired asymptotics (along with the coefficient
before the leading term) for exponential target. Our analysis shows that the
asymptotic relations (23) and (26) are valid at approximately |x| > 10 for
all 0 < µ < 2. Moreover, the above asymptotic expressions are not valid
exactly at the points µ = 0 and 2 in accord with the definition of fractional
Laplacian (7).

4. Numerical simulations of semigroup dynamics
in the derived potentials

In this section, we are going to solve numerically the equation for the so-
called fractional diffusion (or topological diffusion as it used, in particular,
to describe the topology of polymer chains, see, e.g. Refs. [29–32])

∂tθ∗ = −λ|∆|µ/2θ∗ − V(x)θ∗ (27)

with the potential functions V(x) in forms of (15) and (18) respectively.
Here, θ∗ ≡ θ∗(x, t) is a conjugated “wave function”, cf. Eq. (1). It is related
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to transient pdf ρ(x, t) as θ∗(x, t)θ(x, t) = ρ(x, t), see below. We will call the
dynamics with potential (15) (generated by Gaussian function) as Gaussian
dynamics, while that with potential (18) (generated by exponential function)
as exponential dynamics. Note that similar to Refs. [12] and [20], here we
deal with discontinuous, jump-type processes. We recollect that the function
Mν(x) is here strongly engaged as both above terminal pdfs (and hence semi-
group potentials, determining the dynamic behavior) are expressed through
it. Below, we consider the numerical solution of equation (27) (recasted to
the equation for pdf ρ(x, t)) with initial density, which is also related to
Mν(x), namely two-peaked δ-like function Mν→1(x).

Note also that, to the best of our knowledge, the present consideration
is the first one to study the implications of M-Wright function in the realis-
tic physical problems with potentials, confining corresponding Lévy flights.
This is because usually (see above) this function is related to the solution
of the free diffusion problem with fractional time derivative. Below, we will
point to the real physical problems, where our numerical solutions will be
useful.

As the potential V(x) depends unambiguously on the terminal pdf ρ∗(x),
we reduce equation (27) to the form independent of V. This permits to avoid
the direct numerical representation of the hypergeometric functions (which
is quite involved), substituting it by numerical calculation of corresponding
fractional derivatives. Following [12], we define the potential Φ(x)

Φ(x) = ln ρ
1/2
∗ (x) . (28)

This substitution generates the effective Gibbs–Boltzmann form of the frac-
tional diffusion equation (27), see Ref. [12] for details. In this case,

θ∗(x, t) = ρ(x, t) exp(−Φ(x)) ≡ ρ(x, t)

ρ
1/2
∗ (x)

and θ(x, t) = ρ
1/2
∗ (x) = exp(Φ(x)) ,

(29)
where now ρ(x, t) is the desired transient pdf, for which we should solve the
corresponding fractional equation. To obtain the form of this equation, we
use the root of Refs. [12, 20] and substitute expression (29) for θ∗(x, t) into
equation (27) to obtain

∂tρ = −λ exp(Φ)|∆|µ/2
[
ρ exp(−Φ)

]
+ λρ exp(−Φ)|∆|µ/2 exp(Φ) . (30)

Equation (30) is a desired equation for topological fractional diffusion, which
does not contain the potential V(x). However, the substitution Φ(x) =
−κV (x) (κ = (kBT )

−1, kB is Boltzmann constant, T is a temperature)
recasts this equation to more customary (in polymer science) form [30–32].
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We have

1

λ
∂tρ = − exp

(
−κV

2

)
|∆|µ/2

[
ρ exp

(
κV

2

)]
+ρ exp

(
κV

2

)
|∆|µ/2

[
exp

(
−κV
2

)]
, (31)

where explicitly

V (x) = −1

κ
ln ρ∗(x) . (32)

Equation (31) (with respect to (32)) will be used in actual numerical cal-
culations. Knowing the target function ρ∗(x), we can effectively recover
the potential in which fractional dynamics occur. In other words, knowing
ρ∗(x) and starting from any desired (taken, say, from physical grounds) ini-
tial function ρ0(x), we can trace the whole dynamical transition from ρ0(x)
to ρ∗(x) through intermediate steps ρ(x, t).

As in numerical solution of Eq. (31), we use very small time steps, the
simple Euler scheme for time derivatives is sufficient. Moreover, for fine
spatial grid, it is sufficient to use trapezoid rule for evaluation of Cauchy
principal value of integrals on each Euler time step for evaluation of fractional
derivative |∆|µ/2.

We begin our numerical simulations with Gaussian dynamics. Equation
(31) has been solved numerically for λ = κ = 1 and representative values of
µ = 0.1, 0.5, 1.0 and 1.5 for the initial function in the form of

ρ0(x) =
1

2
M0.96(x) . (33)

The dynamics is reported in Fig. 4. It is seen that for confining potential
(15), the equilibrium is achieved quite quickly — already at t = 0.8 (for
the slowest case of µ = 0.1), the pdf arrives at terminal one and then stays
constant in time. At the increase of Lévy index µ, the relaxation becomes
faster. While at µ = 0.1, the function ρ(x, t = 0.01) is nearly the initial
one, at µ = 1.5, this function is almost at final stage of time evolution as
equilibrium is achieved at t = 0.1 (it is seen that ρ(x, t = 0.05) is already
very close to ρ∗(x)). In other words, the increase of the parameter µ leads
to effective equilibration of the probability distributions. To show that, we
plot additional curves ρ(x, t = 0.05) at µ = 1 and 1.5 and ρ(x, t = 0.005) at
µ = 1.5.

Although potential (18) for exponential dynamics has much more com-
plex numerical realization than that for Gaussian one, the algorithm, based
on equation (31), permits to calculate the time evolution quite easily. Once
more, we start with ρ0(x) in the form of (33) and represent the results of
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and Lévy indices µ, shown in the panels. Both initial (red or light grey two-peaked
curves, t = 0) and final (target; black color) pdfs are also shown.
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the numerical simulations in Fig. 5. The main features of that dynamics are
similar to the Gaussian case. The only difference is that the target pdf has
(as it should be) the cusp at x = 0. This implies that transient pdfs for large
time instants (i.e. when pdf is close to final one) have also cusps at x = 0.
Our analysis shows that these cusps are also responsible for potential (18)
peculiarities (deep narrow wells) near x = 0, see Fig. 3.

Note that there is no problem to calculate numerically the dynamics of
pdf for any other (then (33)) initial one. Moreover, any kind of target pdf
(for example, M-Wright function for arbitrary index ν) can be considered
within the above algorithm. This is because there is no need now to have
the analytical expression for the potential V(x), while the function Mν(x)
can be effectively represented by power series for virtually any (at least at
ν < 0.96) index ν, see Fig. 1.

5. Summary

One of the reasons we choose the initial pdf in the form of (33) is that
it might be used for the description of complicated magnetic resonance line-
shapes, see, for instance, Fig. 10 of Ref. [22]. Actually, many more realistic
processes (ranging from solid state physics, polymer chemistry and econo-
physics to marine biology and even contaminants spreading [33]) can be
described by nonlocal fractional dynamics. We emphasize here, that in spite
of that one of our considered pdfs is Gaussian, the presented formalism is
suitable at its best to describe the jump-type non-Gaussian stochastic pro-
cesses. Of course, the Gaussian one is also a particular case (for instance,
through M-Write function [14, 15]) of above class.

Let us finally say more about realistic physical regimes, where the above
formalism can be applied. Standard examples here are the dynamical re-
sponce of amorphous materials such as conventional glasses (see, e.g.,
Ref. [34]), the long-time relaxation in spin [34, 35], so-called orientational
glasses [36] and especially crossover between glassy (non-Gaussian and possi-
bly bimodal, two-peaked pdfs) and ordered (e.g. ferromagnetism in spin sys-
tems with Gaussian pdf) states. It had also been shown (see Refs. [37, 38])
that random electric fields, acting between dipole impurities in different
kinds of disordered dielectrics, generate long-time nonexponential relaxation
in them. Here, also the crossover from Gaussian to non-Gaussian relaxation
patterns occurs.

This relaxation is a source of many experimentally observed anomalies.
One more important application is the theory of inhomogeneously broadened
resonant lines [39]. Such broadening occurs in condensed matter and/or bi-
ological species, in a number of spectroscopic manifestations such as the
electron paramagnetic resonance, nuclear magnetic resonance, optical and
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neutron scattering measurements, see, e.g. [39]. The broadening appears
due to random electric and magnetic fields, strains and other perturbations
from defects in a substance containing the centers whose resonant transi-
tions between energy levels are studied. The usual technique of calculation
of shapes of such resonant lines is the so-called statistical method [39, 40].
This method determines the line shape as an averaged (over spatial and ther-
mal fluctuations) delta-function, stemming from the resonance contribution
of each single center. The outcomes depend strongly on the spatial positions
of the centers, their concentration, and interactions between them [40]. In
this case, Gaussian pdf realizes for high centers concentration and strong
short-range interaction between them. The opposite limiting case refers
to small center concentrations and long-range (like dipole–dipole or higher
multipole) interactions. It generates the long-tailed, non-Gaussian pdfs
and Lorentz (Cauchy) distribution in particular. The intermediate regimes
yield various non-Gaussian pdfs, with the Holtzmark function among them
[40, 41]. Note that the application of the above formalism to the models of
galaxy formation [42, 43] permits to answer a question about the possible
ordering of angular momenta of smaller galaxies prior to their merging in
larger objects [43]. The application of the considered dynamic formalism to
the primordial time evolution of galaxies and their clusters may also permit
to answer many yet unsolved questions. We shall discuss this important
problem in the future publications.

Long-time experimental research on resonant techniques confirms the ef-
ficiency of statistical method in determination of the resonant line shapes,
which generally are by no means Gaussian. The presented consideration
shows that many physical systems are characterized intrinsically by transi-
tions between Gaussian and non-Gaussian pdfs. In many cases, they can be
obtained (through transient pdfs like the above obtained numerical results)
from Gaussian pdf by varying the system parameters, like defects concen-
tration, their type as well as external stimuli, such as temperature, pressure,
electric or magnetic field etc. Note that, as our present analysis shows, the
system can well finish with the Gaussian distribution. Namely, under suit-
able confining conditions, generated by the potential (depending on target
pdf, see above), stemming, in its turn, from the unavoidable defects and
impurities or external pressure in a sample, the initial non-Gaussian pdf
(corresponding in our case to quite complicated bimodal pdf (33)) can relax
to Gaussian.



1622 J.L. Silva, V.A. Stephanovich

REFERENCES

[1] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge
University Press, 2004.

[2] A. Lasota, M.C. Mackey, Fractals and Noise: Stochastic Aspects of
Dynamics, Springer-Verlag, Berlin 1995.

[3] Z. Schuss, Theory and Applications of Stochastic Processes: An Analytical
Approach, Springer, New York 2009.

[4] N.G. Van Kampen, Stochastic Processes in Physics and Chemistry,
3rd edition, North-Holland, Amsterdam 2007.

[5] R.N. Mantegna, H.E. Stanley, Introduction to Econophysics: Correlations
and Complexity in Finance, Cambridge University Press, Cambridge 2007.

[6] S. Rachev, Y. Kim, M. Bianchi, F. Fabozzi, Financial Models with Levy
Processes and Volatility Clustering Wiley, New York 2011.

[7] J.W. Kirchner, X. Feng, C. Neal, Nature 403, 524 (2000).
[8] H. Scher et al., Geophys. Res. Lett. 29, 1061 (2002).
[9] O. Benichou, C. Loverdo, M. Moreau, R. Voituriez, Rev. Mod. Phys. 83, 81

(2011).
[10] I.I. Eliazar, M.F. Shlesinger, Phys. Rep. 527, 101 (2013).
[11] W.H. Lee, K.I. Hopcraft, E. Jakeman, Phys. Rev. E 77, 011109 (2008).
[12] P. Garbaczewski, V. Stephanovich, Phys. Rev. E 80, 031113 (2009).
[13] P. Garbaczewski, V. Stephanovich, Physica A 389, 4419 (2010).
[14] R. Gorenflo, Yu. Luchko, F. Mainardi, Fract. Calc. Appl. Anal. 2, 383 (1999)

[arXiv:math-ph/0701069].
[15] F. Mainardi, A. Mura, G. Pagnini, Int. J. Differential Equations 2010,

104505 (2010).
[16] E.M. Wright, J. London Math. Soc. 8, 71 (1933).
[17] E.M. Wright, Proc. London Math. Soc. 38, 257 (1935).
[18] E.M. Wright, J. London Math. Soc. 10, 286 (1935).
[19] M. Abramowitz, I. Stegun (Eds.), Handbook of Mathematical Functions,

Dover, New York 1972.
[20] P. Garbaczewski, V. Stephanovich, Phys. Rev. E 84, 011142 (2011).
[21] H.J. Haubold, A.M. Mathai, R.K. Saxena, arXiv:0909.0230 [math.ca].
[22] Yu.O. Zagorodnii et al., Phys. Rev. Mater. 2, 014401 (2018).
[23] S.G. Samko, A.A. Kilbas, O.I. Maritchev, Fractional Integrals and

Derivatives, Gordon and Breach, New York 2003.
[24] P. Garbaczewski, R. Olkiewicz, J. Math. Phys. 40, 1057 (1999).
[25] I. Eliazar, J. Klafter, J. Stat. Phys. 111, 739 (2003).
[26] P. Garbaczewski, V.A. Stephanovich, Acta Phys. Pol. B 43, 977 (2012).
[27] K. Kaleta, J. Lorinczi, Phys. Rev. E 93, 022135 (2016).

http://dx.doi.org/10.1038/35000537
http://dx.doi.org/10.1029/2001GL014123
http://dx.doi.org/10.1103/RevModPhys.83.81
http://dx.doi.org/10.1103/RevModPhys.83.81
http://dx.doi.org/10.1016/j.physrep.2013.01.004
http://dx.doi.org/10.1103/PhysRevE.77.011109
http://dx.doi.org/10.1103/PhysRevE.80.031113
http://dx.doi.org/10.1016/j.physa.2010.06.036
http://dx.doi.org/10.1155/2010/104505
http://dx.doi.org/10.1155/2010/104505
http://dx.doi.org/10.1112/jlms/s1-8.1.71
http://dx.doi.org/10.1112/plms/s2-38.1.257
http://dx.doi.org/10.1112/jlms/s1-10.40.286
http://dx.doi.org/10.1103/PhysRevE.84.011142
http://dx.doi.org/10.1103/PhysRevMaterials.2.014401
http://dx.doi.org/10.1063/1.532706
http://dx.doi.org/10.1023/A:1022894030773
http://dx.doi.org/10.5506/APhysPolB.43.977
http://dx.doi.org/10.1103/PhysRevE.93.022135


Nonlocal Fractional Dynamics for Different Terminal Densities 1623

[28] K. Kaleta, T. Kulczycki, Potential Analysis 33, 313 (2010).
[29] D. Brockmann, I. Sokolov, Chem. Phys. 284, 409 (2002).
[30] D. Brockmann, T. Geisel, Phys. Rev. Lett. 90, 170601 (2003).
[31] D. Brockmann, T. Geisel, Phys. Rev. Lett. 91, 048303 (2003).
[32] V.V. Belik, D. Brockmann, New J. Phys. 9, 54 (2007).
[33] J.W. Kirchner, X. Feng, C. Neal, Nature 403, 524 (2000).
[34] G. Parisi, Field Theory, Disorder and Simulations, World Sci., Singapore

1992.
[35] K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986).
[36] U.T. Höchli, K. Knorr, A. Loidl, Adv. Phys. 39, 405 (1990).
[37] V.A. Stephanovich, Ferroelectrics 192, 29 (1997).
[38] E.V. Kirichenko, V.A. Stephanovich, Acta Phys. Pol. B 43, 1027 (2012).
[39] A. Abragam, Principles of Nuclear Magnetism, Oxford University Press,

2002.
[40] A.M. Stoneham, Rev. Mod. Phys. 41, 82 (1969).
[41] S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
[42] M.S. Longair Galaxy Formation, Springer, Berlin 2008.
[43] V.A. Stephanovich, W. Godłowski, Astrophys. J. 810, 167 (2015).

http://dx.doi.org/10.1007/s11118-010-9170-4
http://dx.doi.org/10.1016/S0301-0104(02)00671-7
http://dx.doi.org/10.1103/PhysRevLett.90.170601
http://dx.doi.org/10.1103/PhysRevLett.91.048303
http://dx.doi.org/10.1088/1367-2630/9/3/054
http://dx.doi.org/10.1038/35000537
http://dx.doi.org/10.1103/RevModPhys.58.801
http://dx.doi.org/10.1080/00018739000101521
http://dx.doi.org/10.1080/00150199708216168
http://dx.doi.org/10.5506/APhysPolB.43.1027
http://dx.doi.org/10.1103/RevModPhys.41.82
http://dx.doi.org/10.1103/RevModPhys.15.1
http://dx.doi.org/10.1088/0004-637X/810/2/167

	1 Introduction
	2 General formalism
	3  Large |x| asymptotics of the semigroup potentials
	4 Numerical simulations of semigroup dynamicsin the derived potentials
	5 Summary

