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THE KINEMATICS OF SPIKE TRAINS∗
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Neural cells, the main agents in the brain responsible for processing
of sensory information, animating our limbs, our thoughts, desires, and
actions, communicate with each other by sending electric pulses called ac-
tion potentials or spikes. This communication can be described with point
processes which we introduce here simply.
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1. Introduction

When we look at a lecturer, we usually do not doubt his reality. We can
see him, hear him, we are convinced that were we to come up and touch him
he would be there. And yet, all this information perceived and expected is
really a construct of our brain. Entering our brain, all sensory information
is transformed into a distributed code of impulses called action potentials or
spikes sent by the neural cells — neurons — to each other. This intricate
network collectively processes incoming inputs constructing an image of the
world, building memories, turning percepts and thoughts into actions.

Consider human eye. Each retina contains 125 million receptors which
respond to incoming light by sending electric signals to other cells which
process it through several layers of connected network leading to 1 million
ganglion cells which send this processed information down to the brain. So
the visual percept of the lecturer is built from images coming from two one-
megapixel cameras updated a thousand times per second. Indeed, all the
sensory stimuli are turned into sequences of identical impulses which are
called spike trains. The interpretation of a specific sequence depends on the
context, where is the signal coming from or where it goes.

The basics of neural coding were discovered at the beginning of 20th

century by Adrian [1]. He recalled: I had arranged electrodes on the optic
nerve of a toad in connection with some experiments on the retina. The room
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was nearly dark and I was puzzled to hear repeated noises in the loudspeaker
attached to the amplifier, noises indicating that a great deal of impulse ac-
tivity was going on. It was not until I compared the noises with my own
movements around the room that I realized I was in the field of vision of
the toad’s eye and that it was signaling what I was doing. Adrian observed
three basic facts [1, 2]. He noticed that sensory neurons generate stereotyp-
ical impulses (action potentials) and the generation is all or nothing, pulse
frequency encodes the stimulus amplitude, and prolonged stimuli lead to
decrease of spiking frequency (adaptation).

Since then, numerous studies addressed the problem of coding in the
neural system (see [3] for review). Recording responses of single cells to
multiple repetitions of the same stimulus revealed their stochastic nature.
It is most practical to think of the relation between possible stimuli {s(t)}
and responses {ti} in terms of joint probability distribution P ({s(t)}; {ti}).
The problem of coding is the problem faced by a researcher: we present
the same stimulus multiple times and we want to find out the distribution
of admissible responses. The problem of decoding is the real problem the
animal faces: given a specific spike train, identify the most probable stimulus
which caused it. To discuss the codes used by the nervous system, we must
have a language we can use to precisely describe this reality. This language
is provided by the theory of point processes which we introduce here in a
tutorial manner.

2. Spike trains as point processes

To set the stage consider the following experiment [4, 5]. An anesthetized
cat is watching a screen where a light bar is moving with fixed velocity left
and right with 1 s stops between changing the motion direction. We identify
a cell in the visual system which responds to the stimulus by changing its
activity in a way correlated with the stimulus manipulation. We want to
characterize this response. How shall we do it?

A comprehensive representation of the results of such an experiment is
shown in Fig. 1. How should we summarize these results? If we believe
that every spike matters, then the whole raster plot is the only complete
representation. At the other extreme, we might just provide a single number
as a summary, such as the average spiking frequency. Indeed, this was the
practice in the times of Lord Adrian. What if we are not happy with either
extreme, how shall we proceed? After about 40 years since average frequency
came into use, Gerstein proposed to summarize the results of evoked response
experiments by averaging binned responses, which he called post-stimulus
time histogram (PSTH) [6]. Forty years later, again, more complex models
were proposed [7–9]. So should we expect progression of consecutively more
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Fig. 1. Top: A raster plot representing results of a single experiment consisting
of recordings of responses of a single cell to 40 repetitions of the same stimulus
(simulated data). Bottom: Post-stimulus time histogram (PSTH), which is the
average over repetitions of the response.

complex models? Are there ways to prefer one model over the other? These
questions are addressed today within the theory of point processes, which
we will now present.

Stochastic point process is a stochastic process whose realizations are
sequences of point events. We assume these events are momentary and
indistinguishable other than by the time of their appearance. For example,
for spikes, we can take the time the membrane potential takes maximum
value. Thus, a stochastic process is a rule which assigns a series of points to
any random event from some probabilistic space.

We focus here on the case of evoked responses, when the same stimulus
is presented repeatedly and the responses are collected. Then, during the
time of experiment, we can register 0, 1, 2, . . . , n spikes with probabilities
P(0,T ][n] such that

∞∑
n=0

P(0,T ][n] = 1 .

The probability of each distribution is given by

Qn(u1, u2, . . . , un) , where u1 < u2 . . . < un

and
T∫

0

dτ1

T∫
τ1

dτ2 . . .

T∫
τn−1

dτnQn(τ1, τ2, . . . , τn) = P(0,T ][n] ,



2130 D.K. Wójcik

where Qn is probability density

Qn(u1, u2, . . . , un)du1du2 . . . dun = Pr(one event in each interval
(u1, u1 + du1], (u2, u2 + du2], . . . , (un, un + dun]) .

A stochastic process is defined uniquely by specifying allQn(u1, u2, . . . , un).
If Qn(u1, u2, . . . , un) = Qn(u1 + t, u2 + t, . . . , un + t), we say the process is
stationary.

Note that we may also define Q̃n = 1
n! for arbitrary u1, u2, . . . , un

T∫
0

dτ1

T∫
0

dτ2 . . .

T∫
0

dτnQ̃n(τ1, τ2, . . . , τn) = P(0,T ][n] .

3. Regular point processes

Among all possible point processes to describe spike trains, we consider a
class of regular point processes. In such a process, the probability to observe
an event during interval (t, t+ dt] is

Pr[0 events in (t, t+ dt]|N0:t] = 1− λ(t;Ht)dt+ o(t,∆t) ,

Pr[1 event in (t, t+ dt]|N0:t] = λ(t;Ht)dt ,

Pr[more than 1 event in (t, t+ dt]|N0:t] = o(t,∆t) ,

(1)

where

N0:T = {0 < u1 < u2 < . . . < uj ≤ t ∩N(t) = j} ,
N(t) — number of events during time(0, T ] ,

Ht = [u1, . . . , us] — vector of those N(t) spike times ,
us ≡ uN(t) .

From the definition above, we see that during short-time intervals at
most one event may take place. N[0,T ] is a single realization of the process
during the time 0 to T . It is a right-continuous function which jumps by 1
during the spike times, uk, and otherwise it is constant. Its properties are:

1. N(t) ≥ 0;

2. N(t) is integer;

3. if s ≤ t, then N(s) ≤ N(t);

4. for s < t, N(t)−N(s) = the number of spikes during (s, t].
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Quantity λ(t|Ht) we introduced is called the conditional intensity for
t ∈ (0, T ] (conditional intensity of the process, stochastic intensity, or hazard
function)

λ(t|Ht) := lim
∆t→0

Pr(N(t+ ∆t)−N(t) = 1|Ht)

∆t
. (2)

In general, λ may depend on the whole history of spiking.
In experiments, it is often convenient to use the interspike interval (ISI)

distribution p(t|Ht)

p(t|Ht)∆t := Pr(one event in (t, t+ ∆t)∩ no events in (uN(t), t]|u1, . . . , us) .
(3)

Another useful concept is survival function

S(t|u1, . . . , us) := Pr(no events in (uN(t), t]|u1, . . . , us)

=

∞∫
t

dτ p(τ |u1, u2, . . . , us)

= 1−
t∫

us

dτ p(τ |u1, u2, . . . , us) .

Hazard function, ISI distribution and the survival function are related
as follows:

p(t|u1, . . . , us)∆t =

Pr(one event in (t, t+ ∆t) ∩ no events in (uN(t), t]|u1, . . . , us) =

Pr(one event in (t, t+ ∆t)|no events in (uN(t), t] ∩ u1, . . . , us)

×Pr(no events in (uN(t), t]|(u1, . . . , us)) =

λ(t|u1, . . . , us)∆t S(t|u1, . . . , us) .

Using this relation, it is possible to express each of them in terms of any
other one. For example,

λ(t|u1, . . . , us) =
p(t|u1, . . . , us)

S(t|u1, . . . , us)
=

p(t|u1, . . . , us)

1−
∫ t
us

dτ p(τ |u1, u2, . . . , us)
. (4)

So we found a formula which allows us to compute the hazard function, λ,
when we know the distribution of interspike intervals, p. Taking advantage
of this formula, we can easily compute the remaining relations between λ, p
and S

p(t|u1, . . . , us) = − d

dt
S(t|u1, . . . , us) , (5)
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λ(t|u1, . . . , us) = −dS(t|u1, . . . , us)

dt
/S(t|u1, . . . , us)

= − d

dt
lnS(t|u1, . . . , us) .

Integrating this last formula from us to t, we obtain

t∫
us

dτ λ(τ |u1, . . . , us) = − lnS(t|u1, . . . , us) + lnS(us|u1, . . . , us) .

However, S(us|u1, . . . , us) is the probability that during (us, us], there was
no spike, so it is 1. This follows, for example, from continuity

S(us + τ |u1, . . . , us) = 1− τp(us + ϑτ |u1, . . . , us) ≥ 1− τc τ→0−→ 1 ,

where ϑ ∈ [0, 1]. Thus,

t∫
us

dτ λ(τ |u1, . . . , us) = − lnS(t|u1, . . . , us)

and so

S(t|u1, . . . , us) = exp

− t∫
us

dτ λ(τ |u1, . . . , us)

 .
Therefore, the ISI distribution is given by

p(t|u1, . . . , us) = − d

dt
S(t|u1, . . . , us)

= λ(t|u1, . . . , us) exp

− t∫
us

dτ λ(τ |u1, . . . , us)

 . (6)

Of course, S is always a nonincreasing function, p, λ ≥ 0.
A point process is called stationary when

λ = λ(t− us) ,
p = p(t− us) ,
S = S(t− us) .
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4. Poisson process

Poisson process is the simplest point process where the conditional proba-
bility depends only on time: λ(t|u1, . . . , us) ≡ λ(t). Further, if λ is constant,
we have a homogeneous Poisson process. Due to its simplicity, majority of
objects we discussed before can be computed which we shall do in this section
as an illustration of the general theory.

Let us divide the time of experiment (0, T ] into M intervals δt, Fig. 2.

Fig. 2. Discrete representation of a spike train.

Then
Pr[there were spikes at times u1, u2, . . . , us] =

s∏
j=1

(λ(uj)δt)
M∏
n=1

[
1− λ

((
n− 1

2

)
δt
)
δt
]

s∏
j=1

(1− λ(uj)δt)

.

Thus, the probability density to observe specific spiking history N0:t is

p(N0:T ) = lim
M→∞

Pr[there were spikes at times u1, u2, . . . , us]

(δt)s

=

s∏
j=1

λ(uj) lim
M→∞

M∏
n=1

[
1− λ

((
n− 1

2

)
δt
)
δt
]
.

Taking logarithm of the second factor, we obtain

ln
M∏
n=1

[
1− λ

((
n− 1

2

)
δt
)]

=
M∑
n=1

ln
[
1− λ

((
n− 1

2

)
δt
)
δt
]

≈
M∑
n=1

[
−λ
((
n− 1

2

)
δt
)
δt+ o

(
δt2
)]

≈ −δt
M∑
n=1

λ
((
n− 1

2

)
δt
)

M→∞−→ −
T∫

0

λ(t)dt .
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Thus, we obtain the fundamental formula

p(N0:T ) =

 s∏
j=1

λ(uj)

 exp

− T∫
0

λ(t)dt

 . (7)

For homogeneous Poisson process of intensity λ(t) ≡ λ, this simplifies to

p(N0:T ) = λse−λT .

Using the fundamental formula above, we can compute many properties
of the Poisson process. For example, the probability to observe exactly
n spikes during the time of the experiment (0, T ] is

P(0,T ][n] =

T∫
0

du1

T∫
u1

du2 . . .

T∫
un−1

dunλ
ne−λT

= λne−λT
T∫

0

du1

T∫
u1

du2 . . .

T∫
un−1

dun

= λne−λT
Tn

n!
.

This is the Poisson distribution which gives name to the whole process

P(0,T ][n] =
(λT )n

n!
e−λT .

For an inhomogeneous process, one can show [10]

P(0,T ][n] =
1

n!

 T∫
0

λ(t)dt

n

exp

− T∫
0

λ(t)dt

 =

(
λ̄T
)n

n!
e−λ̄T .

A disadvantage of the Poisson process as a model for real spike trains is
that it formally allows for arbitrarily close spikes. This cannot happen in
real neurons because of their refractory properties, which are consequences of
nonlinear properties of ion channel functioning. However, in many cases, for
relatively low frequencies, this is not a serious limitation. On the other hand,
Poisson process is very easy to estimate from data and so it is commonly
used in analysis of experimental data.
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5. More complex examples

The next level of complexity in point process theory is provided by re-
newal processes. They are defined by a fixed distribution of interspike in-
tervals, P (τ). In this case, as we computed above in the general case, the
hazard function is given by

λ(τ) =
P (τ)

1−
∫ τ

0 dsP (s)
,

and the survival function by

S(τ) =

∞∫
τ

ds P (s) .

Kass and Ventura [7] proposed a model which can be considered a generaliza-
tion of renewal processes which they called inhomogeneous Markov interval
model. They considered two-parameter hazard function, depending on the
time from the start of the experiment, t, to address the need to describe re-
sponse to the stimulus, and time since the last spike, τ , to take into account
refractory properties of the cell

λ(t, τ) = λ1(t)λ2(τ) .

To estimate the model from data, one can use generalized additive mod-
els [7], but in experiments containing at least occasionally constant stimuli,
a more direct method was proposed by Wójcik et al. [5]. Here, the distribu-
tion of interspike intervals in responses to stationary parts of stimuli is used
to estimated λ2(τ). This, together with experimental firing rate, is used to
estimate λ1(t).

Figure 3 shows an example of artificial data simulated using Poisson,
parametric IMI (where a gamma distribution was fitted to ISI distibution),
and non-parametric IMI models, fitted to experimental data. A natural

Fig. 3. Artificial spike train data modeling observed experimental activity.
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question appears if we can somehow select between the different models.
Should any of them be selected over others? To address this, we can use a
goodness of fit test based on time-rescaling theorem.

6. Time-rescaling theorem

The time-rescaling theorem [11] says that if we know the true hazard
function of the process, we can use it to rescale spike times so that they
become a realization of the homogeneous Poisson process with unit rate.
More formally:

Theorem (Brown et al. 2002). Let 0 < u1 < u2 < . . . < un < T be
a realization of a point process with conditional intensity λ(t|Nt). Define a
transformation

Λ(uk) =

uk∫
0

λ(u|Nu) du ,

for k = 1, . . . , n. Then Λ(uk) give a homogeneous Poisson process of unit
rate.

For proof see [11].
This theorem can be used as a basis for the following goodness-of-fit test:

1. Compute rescaled ISI: τk = Λ(uk)− Λ(uk−1).

2. Transform τk to a new variable, zk = 1− exp(−τk).

3. Then zk are independent uniform variables on the interval.

4. Order zk from smallest to largest and plot cumulative values of uniform
density against the ordered zks.

5. If the model is correct, resulting curve will be diagonal.

Figure 4 illustrates this test on example data. We can see that the
Poisson model strays from diagonal the most. In particular, it fails the
most for the shortest ISIs. This is consistent with our expectations and
the problems of addressing refraction which we mentioned before. Both
IMI models fare much better, and we see that non-parametric IMI model is
more consistent with the data than the gamma IMI model. This should be
expected, as the spline-based non-parametric approach offers more flexibility
in data modeling. However, it does require more data for fitting. For smaller
data sets, parametric approach might be more reliable.
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Fig. 4. Test of the model quality based on the time rescaling theorem.

7. Summary

In this tutorial, we presented the rudiments of the theory of the point
processes as it is applied to the description of the spike trains in neuroscience.
It is worth mentioning that like every mathematical theory its utility, even
in neuroscience, is not limited to the description of spike trains. For exam-
ple, point processes form a natural description of mice drinking behavior in
IntelliCages, which was used, for example, by Kiryk et al. [12].

We have not been able to give justice to all aspects of this theory. In
particular, simultaneous activity of multiple cells demands further extension
of the theory [13]. The major challenges of the field today are consequences
of availability of massive spiking data from thousands of channels [14, 15].
Reduction, processing and understanding of such data are open challenges
in the field.

The author is grateful to the organizers of the LVIII Cracow School of
Theoretical Physics in Zakopane, 2018, for invitation and for giving him
opportunity to present this material.

REFERENCES

[1] E.D. Adrian, Basis of Sensation, Christophers, 1928.
[2] F. Rieke, D. Warland, R. de Ruyter van Steveninck, W. Bialek, Spikes:

Exploring the Neural Code, MIT Press, 1999.
[3] R. Quian Quiroga, S. Panzeri (Eds.), Principles of Neural Coding, CRC

Press, Taylor & Francis Group, 2013.
[4] G. Mochol et al., J. Neurosci. 30, 3199 (2010).

http://dx.doi.org/10.1523/JNEUROSCI.3250-09.2010


2138 D.K. Wójcik

[5] D.K. Wójcik et al., Neural Comput. 21, 2105 (2009).
[6] G.L. Gerstein, Science (New York) 131, 1811 (1960).
[7] R.E. Kass, V. Ventura, Neural Comput. 13, 1713 (2001).
[8] R.E. Kass, V. Ventura, E.N. Brown, J. Neurophysiol. 94, 8 (2005).
[9] W. Truccolo et al., J. Neurophysiol. 93, 1074 (2005).
[10] D.H. Johnson, J. Comput. Neurosci. 3, 275 (1996).
[11] E.N. Brown et al., Neural Comput. 14, 325 (2002).
[12] A. Kiryk et al., Curr. Alzheimer Res. 8, 883 (2011).
[13] E.N. Brown, R.E. Kass, P.P. Mitra, Nature Neurosci. 7, 456 (2004).
[14] L. Berdondini et al., Biosens. Bioelectron. 21, 167 (2005).
[15] J.J. Jun et al., Nature 551, 232 (2017).

http://dx.doi.org/10.1162/neco.2009.07-08-828
http://dx.doi.org/10.1126/science.131.3416.1811
http://dx.doi.org/10.1162/08997660152469314
http://dx.doi.org/10.1152/jn.00648.2004
http://dx.doi.org/10.1152/jn.00697.2004
http://dx.doi.org/10.1007/BF00161089
http://dx.doi.org/10.1162/08997660252741149
http://dx.doi.org/10.2174/156720511798192745
http://dx.doi.org/10.1038/nn1228
http://dx.doi.org/10.1016/j.bios.2004.08.011
http://dx.doi.org/10.1038/nature24636

	1 Introduction
	2 Spike trains as point processes
	3 Regular point processes
	4 Poisson process
	5 More complex examples
	6 Time-rescaling theorem
	7 Summary

