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We present a consistent framework for treating the energy and angular-
momentum dependence of the shape evolution in the nuclear fission. It com-
bines microscopically calculated level densities with the Metropolis-walk
method, has no new parameters, and can elucidate the energy-dependent
influence of pairing and shell effects on the dynamics of warm nuclei.
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1. Introduction

Soon after the discovery of nuclear fission in 1938 [1], it was recognized
that the process can be viewed qualitatively as an evolution of the nuclear
shape from that of a single compound nucleus to two receding fragments [2,3]
and that Langevin transport theory provides an appropriate model frame-
work [3, 4]. A number of Langevin treatments of fission have been suc-
cessfully developed and applied for excitations high enough to render the
dynamics macroscopic, see, for example, Refs. [5–7].

If the collective shape dynamics is idealized as being highly dissipative,
then the Langevin equation reduces to the Smoluchowski equation in which
the evolution depends on the balance between the driving force provided by
the potential energy of deformation and the dissipative force resulting from
the coupling of the collective degrees of freedom to the remaining system. In
this limit, it has proven possible to describe the Brownian shape motion as
a Metropolis walk on the associated multi-dimensional deformation-energy
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surface [8]. This calculationally simple method has yielded remarkably good
results for the fission-fragment mass distributions [9] and it has made it
possible to predict fission-fragment mass distributions for poorly explored
regions of the nuclear chart [10,11].

2. Combinatorial level density

In Ref. [12], a method was developed for microscopic calculations of
level densities for deformed nuclei and it has been adapted to the fission
process [13]. For a specified shape χ, the single-particle levels for protons
and neutrons needed for the combinatorial calculation of the level density
are obtained by solving the Schrödinger equation in the associated folded-
Yukawa potential. These are the same levels as those previously used in
Ref. [14] to calculate the microscopic shell and pairing energies in the con-
struction of the deformation energy surface, thus guaranteeing consistency of
the approach. The corresponding local many-body vacuum state |0;χ〉 has
N neutrons and Z protons filling the lowest single-particle states, and the
uncorrelated excited states consist of all multiple particle–hole excitations

|i;χ〉 =
∏
n≥1

a†
ν
(i)
n

a
µ
(i)
n
|0;χ〉 . (1)

For each many-body state |i;χ〉, blocked BCS calculations for neutrons and
protons separately provide the state-dependent pairing gaps, ∆n

i (χ) and
∆p
i (χ), respectively, and the energy of the correlated intrinsic many-body

state, Ei(χ) = Eni (χ) + Epi (χ).
For each such an intrinsic state, the angular momentum along the nu-

clear symmetry axis is denoted by Ki and it is assumed that it forms a
rotational band head. The resulting total angular momenta I may then
take on the values I = Ki, (Ki + 1), (Ki + 2), . . . and the corresponding
rotational energies of the band members are

Erot
i (I;χ) =

I(I + 1)−Ki(χ)2

2J⊥ (χ, ∆n
i (χ), ∆p

i (χ))
. (2)

The moment of inertia J⊥ is approximated by the moment of inertia of a
rigid body with the shape χ, modified by the calculated pairing gaps for the
state [15].

In Ref. [12], it was found that the enhancements arising from collective
vibrational modes are unimportant and they are, therefore, ignored in the
present fission applications. The total energy of a state is then given by

Ei(I,χ) = Eni (χ) + Epi (χ) + Erot
i (I;χ) . (3)
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For each shape χ, the resulting states are binned according to their
energy Ei and their total angular momentum I; the bin width was taken as
∆E = 200 keV. The sensitivity of our results to the bin size has been tested
and it was found that a doubling or tripling of ∆E produces negligible
changes in the calculated mass distributions.

3. Shape evolution

The description of nuclear fission as a generalized Brownian motion
builds on the assumption that the evolving nucleus can be characterized
by its shape degrees of freedom χ. The associated shape parameters are
treated as classical variables that are coupled dissipatively to the remain-
ing microscopic degrees of freedom. The resulting large-amplitude collec-
tive motion then exhibits a strongly damped diffusive evolution that can be
described as a random walk on the associated multi-dimensional potential-
energy surface U(χ). When the values of the potential are available on a
(five-dimensional) lattice of shapes [14], the Smoluchowski equation can be
approximately simulated by means of a random walk on this lattice [8].

Because the random walk must satisfy detailed balance, the following
relation must hold between the rates of transition between one lattice site χ
and another χ′, and the corresponding statistical weights

ν
(
χ→ χ′

)
/ν
(
χ′ → χ

)
= ρ

(
χ′
)
/ρ(χ) , (4)

where ρ(χ) is the level density at the lattice site having the shape χ. This
condition can be satisfied in many ways and the Metropolis procedure [16]
is merely one particularly simple realization: A proposed shape change from
χ to χ′ is accepted unconditionally if ρ(χ′) > ρ(χ), whereas it is accepted
only with the probability ρ(χ′)/ρ(χ) otherwise; it is readily verified that
this procedure satisfies a detailed balance.

In Ref. [8] and all subsequent applications until recently [13], smooth
Fermi-gas level-density expressions were used. The ratio between the level
densities for neighboring lattice sites could, therefore, be approximated as

ρ
(
χ′
)
/ρ(χ) ≈ exp(−∆U/T ) , (5)

where ∆U = U(χ′)−U(χ) is the change in the potential energy associated
with the proposed shape change and T = 1/[∂ ln ρ(E∗)/∂E∗] is the local
nuclear temperature. In the new development [13], we wish to account for
pairing correlations and shell effects and we, therefore, use the microscopic
level densities (see Sect. 2) to evaluate the required ratios ρ(χ′)/ρ(χ).

The Metropolis walks were performed on a discrete lattice of more than
five million shapes given in the three-quadratic-surface parametrization [17].
The five independent parameters characterizing a shape are the overall elon-
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gation of the nucleus (in terms of the reduced quadrupole moment q2), the
constriction of the central part (in terms of the neck radius c), the spheroidal
deformations εf1 and εf2 of the two nascent fragments, and the reflection
(mass) asymmetry αg.

4. Analytical extrapolation

Because the computational effort required by the combinatorial method
grows exponentially with excitation, it is practically important to develop a
simple way of extending the results to high energy. We do that by switching
to an analytical expression at E∗(χ) ≈ 6 MeV, below which most of the
specific structure effects, such as spectral gaps or non-monotonic behavior,
have washed out. In this way, important structures in the level density
are maintained, while the numerical calculations are kept to a manageable
level (about 3 CPU seconds per shape). For each particular shape χ, the
extrapolation makes use of its specific shell and pairing energies, Esh(χ)
and Epc(χ). Their influence diminishes with increasing energy and the level
density approaches the analytical expression for a Fermi gas.

We employ the following simple analytical Fermi-gas expression [18],
which is suitable for deformed nuclei with a fixed small angular momentum

ρ (N,Z,E∗(χ), I) = C(χ)E
−3/2
intr exp

(
2
√
a0E

)
, (6)

where Eintr = E∗(χ)−I(I+1)~2/2J⊥(χ) is the approximate intrinsic energy.
The single-particle level-density parameter is a0 = A/e0 for a nucleus having
mass number A and the constant e0 is determined below.

Accounting for the different energy scales of shell effects and pairing
effects, we introduce a backshifted intrinsic excitation energy Ẽintr, which
is similar to the effective excitation E∗eff of Ref. [9] and can be considered a
generalization of the prescription originally employed by Ignatyuk et al. [19]

Ẽintr(χ) = Eintr(χ) +
(

1− e−Eintr(χ)/Ed,sh

)
Esh

+
(

1− e−Eintr(χ)/Ed,pc

)
Epc . (7)

Here, Esh(χ) is the shell-correction energy and Epc(χ) is the pairing con-
densation energy, both calculated for the lowest state at the given shape χ.
The full backshifted energy, Ẽintr = Eintr + Esh + Epc, emerges when Eintr

is much larger than both damping scales.
The damping parameter Ed,sh sets the energy scale for the melting of shell

structure and the damping parameter Ed,pc is the corresponding energy scale
for the melting of pairing correlations. For simplicity, both quantities are
here assumed to be common to all shapes. By fitting the analytic expression
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for a number of typical shapes, optimal values of Ed,sh, Ed,pc, and e0 are
determined and they are then applied for all shapes. The normalization
constant C(χ) in (6) is determined by continuity with the corresponding
microscopic value at the matching energy.

The validity of the analytical extrapolation is illustrated in Fig. 1.
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Fig. 1. Microscopic level densities (solid lines) compared to extrapolated values
(dashed lines). Three different deformations for 236U are considered: the sec-
ond minimum (A), the asymmetric second saddle (B), and an elongated symmetric
shape close to the outer barrier (C). Extrapolated values are shown for local excita-
tion energies E∗(χ) ≥ 6 MeV. The inset shows the angular momentum dependence
of the level density at the asymmetric saddle (B) for different excitation energies.

5. Energy dependence of the fragment yield

The use of microscopic level densities is particularly well-suited for study-
ing the dependence of the shape evolution on the total excitation energy of
the fissioning system because the microscopic pairing and shell effects auto-
matically wash out as the energy is raised. This is illustrated in Fig. 2.

The preliminary treatment in Ref. [9] used an energy-dependent effective
potential obtained by suppressing the microscopic term with a factor of the
form S(E∗) = (1+c)/[exp(E∗/Edamp)+c], which decreases from one to zero
as the excitation E∗ is raised

UE(χ) = Umacro(χ) + S(E∗(χ))Emicro(χ) . (8)

The local statistical weights were then obtained by means of a simplified
Fermi-gas level density, ρeff(χ) = ρFG(Etotal − UE(χ)).
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Fig. 2. (Color online) Fission-fragment charge distributions for 234U at three differ-
ent excitation energies E∗ [MeV]: 6.84 (a), 11 (b), and 16 (c). The solid/blue curves
have been obtained with the microscopic level densities, while the dashed/red
curves were calculated with the effective level density ρeff introduced in Ref. [9].
The results for E∗ = 6.84 MeV are compared to (nth, f) data [20], while those
for E∗ = 11 MeV are compared to (γ, f) data [21]. The calculated results for
E∗ = 6.84 MeV are practically identical and both are in a good agreement with
the experimental data. For E∗ = 11 MeV, the current approach reproduces the
symmetric yield of around 2%, while the very asymmetric yields are too large. The
calculated yields for E∗ = 16 MeV are also quite similar.
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5.1. The symmetric yield

The importance of taking account of nuclear structure effects in the level
density is well illustrated by the energy dependence of the fission-fragment
yield for symmetric splits, see Fig. 3. The standard calculation leads to a
local maximum at E∗ = 7 MeV, followed by a local minimum at 8 MeV;
this bump is followed by a second bump ending with an inflection at around
10 MeV. The experimental data exhibit a qualitatively similar behavior, in
particular a local maximum at E∗ = 7 MeV. Without pairing, the absence
of a gap produces a larger level density, especially for shapes with positive
shell corrections, where both the gap and the single-particle level density are
larger. Thus the symmetric yield is highly sensitive to the pairing properties
of the level density.
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Fig. 3. (Color online) The dependence of the symmetric mass yield for 236U on
the excitation energy. In addition to the standard calculation (blue circles) two
additional calculations are shown — one where the level densities are obtained
without pairing (green crosses) and one where the pairing strength is increased by
25% (triangles). (The potential-energy surface used in the three calculations is the
same, consistent with standard pairing.) Also shown are experimental data from
Ref. [22] (open squares) and Ref. [20] (filled squares).

6. Concluding remarks

We have refined the Metropolis-walk approximation to the Brownian-
motion treatment of fission dynamics [8] by employing microscopic local
level densities obtained by a recently developed combinatorial method [12].
Because the single-particle levels used are the same as those employed for
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the macroscopic–microscopic calculation of the potential-energy surfaces, the
approach is consistent and no new parameters need be introduced. More-
over, the combinatorial procedure provides access to the level density for a
fixed value of angular momentum. We have obtained the local level density
ρ(N,Z,E, I;χ) for over 5 million shapes of several nuclei in the uranium
region and for angular momenta up to I = 9.

We calculated fission fragment charge distributions for 226Th, 234,236U,
and 240Pu using these parameter-free microscopic level densities with the
Metropolis-walk method. The agreement with experimental data was on par
with or better than the yields obtained previously with a phenomenological
level-density parametrization [9]. The angular-momentum dependence of the
fission yields was found to be relatively small and decreasing with increasing
excitation energy.

Because the microscopic level densities automatically contain the dimin-
ishing effects of pairing correlations and shell structure, the present refined
model makes it possible to make more detailed predictions for the energy
dependence of the fission yields. The gradual transition from asymmetric
to symmetric fission and the detailed energy dependence of the symmetric
yield were studied.

Particularly interesting is the finding that the symmetric fragment yield
is not monotonically increasing with excitation energy. This perhaps coun-
terintuitive effect appears to be a result of the large pairing correlations for
shapes with positive shell-correction energies separating the asymmetric-
fission path from symmetric shapes. It is in this connection intriguing that
a recent experiment has reported a non-monotonic energy dependence of the
asymmetric peak shape in the fragment mass yields for fission of 240Pu [23].
We plan to investigate these phenomena in more detail.

The present refined model provides a consistent and computationally
manageable theoretical framework for studying large-scale collective motion
of warm nuclear systems far from equilibrium and, in particular, it provides
a unique tool for calculating energy-dependent fission fragment mass dis-
tributions. The present work extends the use of microscopic level densities
from nuclei in shape equilibrium to arbitrary shapes and our present studies
have revealed the intriguing possibility that the pairing interaction in shapes
far from equilibrium may manifest itself in a measurable manner through
the energy dependence of the fission yields.
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