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As it is well-known, the existence of correlations among the parameters
of mathematical models such as typical physics theories implies that any
attempt of optimisation of the parameters becomes impossible or highly
unstable. When this happens, one says that the parameter determination
(usually referred to as inverse problem) becomes an ill-posed mathematical
problem. In this article, we suggest a regularisation method of ill-posed or
nearly ill-posed inverse problems in the context of the nuclear mean-field
applications with the help of the Monte Carlo methods. We present the
approach and illustrate its numerical results on the example of the parame-
ter adjustments of the phenomenological Woods–Saxon Hamiltonian in the
208Pb nucleus treated as a test case.
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1. Introduction: statistical significance of model predictions

Any modelling of the realistic nuclear structure phenomena, and for that
matter of the great majority of physical effects of interest in various other
domains of research, requires adjustments of parameters. Their so-called ‘op-
timal values’ are then used to perform the calculations, usually in order to
interpret the results of measurements, to predict the new effects as well as to
optimise the conditions for the future experiments. Whereas an interpreta-
tion of the already known experimental results can be considered a category
apart, the meaningful theoretical predictions of various effects, mechanisms
and phenomena outside of the fit area require some special care. Indeed,
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it has been shown in numerous publications related, e.g., to the Skyrme–
Hartree–Fock nuclear structure calculations, cf. for instance Ref. [1] and ref-
erences therein, that of the order of hundreds of various parameterisations
of the Skyrme-type interactions have been used to successfully reproduce
some already known data, whereas the predictions for (extrapolations into)
the new nuclear ranges in the (Z,N)-plane gave diverging results. This lat-
ter, usually undesired effect, often has to do with the instabilities of the
parameterisations deemed optimal. (The reader interested particularly in
the problem of optimisation of the Skyrme-type interactions in the nuclear
structure applications is referred e.g. to the recent Refs. [2,3] and references
therein.)

1.1. Instabilities of the model predictions caused by ill-posedeness

The problems of this type are well-known in applied mathematics within
the so-called Inverse Problem Theory1 and usually signify the presence of
what is called an ill-posed inverse problem (see below). These problems often
have to do with the fact that when performing the parameter adjustments
to the selected samples of experimental data, the ‘optimal’ solutions man-
ifest parametric correlations2, which happen to be present quite frequently
within most of the realistic models of complex physical phenomena. Such
parametric correlations depend on both the model itself (through the inter-
action Hamiltonian) and the sampling, i.e., the choice of the number of data
points and the type of the experimental data, cf. e.g. Ref. [10] and references
therein. Thus, when increasing or decreasing the number of data points se-
lected for the fit, certain parametric correlations may disappear and possibly
contribute to a stabilisation of the final parametrisation. However, one can
demonstrate, cf. discussion in Sect. 2.1, that the presence of parametric
correlations implies ill-posedness of the inverse problem. Since there exist
powerful methods of testing for the presence of parametric correlations —
thus ill-posedeness and instabilities of the obtained parametrisation of the
model — it becomes clear that each meaningful parameter determination
must include such tests; the reader is referred to Ref. [11] for a pedagogi-
cal discussion of the related issues. All parameter determination procedures

1 The literature within the extremely fast developing field of Inverse Problem is im-
pressive, including dozens of books and recently published lecture notes and it would
be out of place to attempt here any overview of this subject. We will limit ourselves
to mention merely a few examples such as Refs. [4–8] or [9].

2 Parametric correlations manifest themselves by the fact that one or more parameters
can be expressed as function(s) of the others without influencing the r.m.s. deviations
in any significant manner. These correlations may result from the fact that the ex-
perimental data used do not constrain the model satisfactorily (for some illustrations,
see below).
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which manifest parametric correlations are mathematically guaranteed un-
stable when attempting predictions outside of the fit area, and their use is
not advised for meaningful theoretical predictions under such circumstances.

1.2. Modelling results and the associated probability distributions

The problem of a meaningful determination of the ‘optimal parameters’
of the model is further complicated by the fact that the experimental data
used as the input for fitting procedures are known only within the uncer-
tainty intervals related to the error bars. Thus, strictly speaking, the exper-
imental results represent probability distributions (often Gaussians) rather
than numbers. This implies that the results of the fitting are associated
with certain probability-distributions — possibly centred around the op-
timal parameter values — the probability-distributions which themselves
characterise the parametric uncertainties. The latter observation provides
the conceptual basis for the Monte Carlo simulations as a very powerful
tool for studying the underling uncertainties and their probability distri-
butions (cf. e.g. Ref. [10]) and by the same token, the related uncertainty
distributions of the final theoretical predictions. This observation has been
used in some previous publications, cf. e.g. Ref. [12], and an extension of
these techniques will be presented and illustrated briefly in this article.

1.3. Probability distributions: the impact of incompleteness of the model

As it turns out, in the nuclear structure applications, the experimental
error-bars are very often relatively small leading to only very insignificant
widths of the mentioned parametric uncertainty distributions3. This is much
less so, as far as theory uncertainties are concerned, the latter related to
the incompleteness of the modelling. It will be instructive at this point to
remind the reader about the mechanism in question by using an example.
Suppose, the nuclear structure Hamiltonian contains the central and the
spin-orbit interactions whereas, say, tensor interactions are not taken into
account. By fitting the parameters to the experimental data, necessarily the
parameters of the interactions present in the model will be ‘contaminated’
by the fact that a part of the interactions is absent, neglected or unknown.
Thus the parameters — in the discussed case of the central and spin-orbit
interactions, which are deemed optimal — are ‘guaranteed falsified’. Even
though the fit of the parameters to the actually used experimental input data

3 An important exception from this rule is provided by the so-called experimental single-
particle levels and their energies, which, as it is well-known, are not directly observable
and depend on various model-dependent hypotheses e.g. about the stripping and pick-
up reaction cross sections, coupling with the surface vibrations etc., cf. e.g. Ref. [10]
and references therein.
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may lead to satisfactory-looking r.m.s. deviations, the predictions related
to the extrapolated nuclear regions can only accidentally be meaningful4.
In other words, the probability-uncertainty distributions of the ‘optimal’
parameters impacted by the experimental errors mentioned just above will
be de facto much broader when taking the theory uncertainties into account.
The consequences of not including certain interactions in the Hamiltonian
(leading to model incompleteness) for the parameter adjustment procedure
are generally difficult to evaluate, cf. also the discussion in Ref. [11]. This
is not only because of the difficulties in the estimating of the impact of the
terms absent in the actual Hamiltonian, but also because it is difficult to
estimate the impact of falsified parameter values of the interactions present
in an incomplete Hamiltonian and caused by the absence of certain terms.
These difficulties increase in all the cases in which a part of the interactions
is yet simply unknown.

1.4. Stochastic interpretation and stochastic significance of predictions

Observations in the preceding section bring us to the problem of stochas-
tic significance of the theoretical modelling of various physical phenomena.
In other words: Since the optimal parameters of the models are known only
up to their uncertainty probability distributions, both because of the exper-
imental errors and incompleteness of the modelling, so are the final results
of the modelling and it becomes of primordial importance to be able to
estimate such uncertainties basing on the ‘best information available’. The
model predictions with narrower uncertainty distributions can be considered
of higher statistical significance for a given physics case (cf. Figs. 4 to 7).
The widths of such distributions determine what is referred to as confidence
intervals.

As it turns out, the issue of model’s capacity to predict the results before
experiment is gaining in importance in many domains of quantum physics
and, in particular, in the nuclear structure. There are not only the inter-
national conferences devoted entirely to this subject, cf. Ref. [14], but also
some scientific journals begin imposing the conditions according to which
the articles which involve the theoretical modelling must discuss the issue of
the ‘uncertainty of the model’, cf. e.g. Ref. [15].

4 The authors of the book Numerical Recipes, Ref. [13], p. 651, in their introduction
to the chapter Modelling of Data observe with sarcasm:
“Unfortunately, many practitioners of parameter estimation never proceed beyond de-
termining the numerical values of the parameter fit. They deem a fit acceptable if a
graph of data and model look good. This approach is known as chi-by-the-eye. Luck-
ily, its practitioners get what they deserve.”
[These are the present authors who have chosen to underly certain words in the above
quotation.] In other words: very likely “they” do not get any meaningful result.
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The mathematical methods needed for this type of the analysis have been
developed intensively in the past, and are actually in an intensive progress
in the domain of Inverse Problem Theory, cf. Refs. [6–8] as an example, but
literally thousands of articles on the subjects appear every year, in particular
in the devoted journals, and dozens of books appeared in the recent years.

In this article, we wish to present and discuss certain concepts of the
regularisation of the ill-posed inverse problem focussing our illustrations on
a particular subject of the nuclear theory predictions viz. those of the single
nucleonic levels in spherical nuclei. We will employ for this purpose the
nuclear mean-field theory using the phenomenological Woods–Saxon model.
The latter turns out to be particularly well-suited for illustrations of certain
mathematical methods of evaluating the parametric uncertainties which,
even though standard in various fields of applications, are still rather seldom
applied systematically in the nuclear structure physics.

The present article follows the main lines of the ‘Stochastic Approach to
the Modelling Uncertainties’, as proposed in Ref. [10]. The latter can be
formulated as follows:

Given quantum phenomenon P described using the modelM with
the help of observables {F}

M : F̂1, F̂2, . . . F̂p .

These observables will be characterised not only by the related
eigenvalues, whose ensembles are denoted {fj} and thus:

[
F̂1 → {f1}, F̂2 → {f2}, . . . F̂p → {fp}

]

but also by distributions of probability of their validity

P1 = P1(f1) , P2 = P2(f2), . . . Pp = P1(fp) .

These distributions need to be derived with the help of stochastic
methods on the basis of all the uncertainties both known, or pos-
sible to estimate for the model considered at a given time of its
evolution.

The above formulation can be seen as an evolutive-research approach, a
way to follow when trying to obtain the more and more stochastically and
physically5 significant parameter estimates while going beyond ‘just simple

5 It may be considered disturbing if in a number of publications, the non-equivalent
parametrisations of the same Hamiltonian are obtained (by non-equivalent we mean
not only that the values of parameters differ considerably but even the signs of certain
coupling constant differ from one article to another implying that the attractive
character of the same term goes into a repulsive one, depending on the author)
whereas the r.m.s. deviations of the considered physical observables are comparable
and comparably ‘acceptable’ in terms of the ‘chi-by-the-eye’ criterion of footnote 4.
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χ2-minimisation’. In the following, we will present certain illustrations of
what is meant.

2. Inverse problem and Monte Carlo simulations

In any non-relativistic quantum-mechanical problem, one of the principal
goals consists in finding the solutions of the Schrödinger equation. In such
an equation, the Hamiltonian of a physical system contains the interaction
potential V̂ = V̂ (p, . . .), with the ensemble of all parameters, p ≡ {pi}, for
i = 1, 2, . . . f . In applied mathematics, the solution of the problem

Ĥ(p, . . .)ψm(p;~r ) = en(p)ψn(p;~r ) , (1)

in which all the parameters, usually referred to as optimal, are considered
known, is called solving the direct problem. At the same time, the algorithm
employing the parameters to generate the solutions, the latter called in the
jargon ‘data’ and denoted d, is usually abbreviated using an equivalent short-
hand notation

Ô p = d . (2)

One says: An operator Ô acting on the known parameters p provides the
data d. In the case of interest for this article, the ‘data’ are identified with
the eigen-energies of the underlying Hamiltonian and the corresponding wave
functions whereas, more generally, in the quantum many-body theories, the
operator Ô should be identified with the many-body Hamiltonian.

However, in order to be able to solve the direct problem, in one way or
another, the optimal parameters must be found first. Formally, the corre-
sponding solution can be written down in the form of

Ô−1 d exp = popt . (3)

One says: Equation (3) represents the so-called inverse problem in which the
inverse of the original operator Ô, here denoted Ô−1, when acting on the
selected experimental data set d exp (called ‘sample’), provides the optimal
parameter set.

2.1. Parametric correlations and singularities of the inverse problem

This compact mathematical representation of the issue of the direct and
inverse problem remains strictly formal in the cases of interest in this article
and, more generally, in the nuclear structure theory constructed around the
many-body nuclear interaction Hamiltonian — simply because the inverse
of the many-body Hamiltonian remains unknown. As a consequence of this
fact, we will limit ourselves to a few observations, which in place of the
formal inverse problem considerations address a much more ‘practical’ issue:
a linearised approach to the χ2-minimisation in the vicinity of the solutions.
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Recall that parameter estimates involve the minimisation of the measure
of the distance between the model (in the present case: nucleon) energies
and the corresponding experimental data, the latter, up to a normalisation
factor usually taken in the form of

χ2(p) =
Nexp∑

j=1

wj

[
eexpj − ethj (p)

]2
→ ∂χ2

∂pk
= 0 , k = 1 . . . f , (4)

where N exp represents the number of data points and f the number of model
parameters, whereas {wj} are the physicist-defined weight factors, which
remain a subjective element of the full approach (here, however, to present
the arguments we are interested in, it will not be necessary to consider them
explicitly).

Let us express the energies using an approximate Taylor linearisation
which in the vicinity of the ‘optimal’ solution, popt, can be written down as

ethj (p) ≈ ethj
(
popt

)
+

f∑

k=1

(
∂ethj
∂pk

)∣∣∣∣∣
p=popt

(
pk − poptk

)
. (5)

Such an expression approaches the exact result when the parameters ap-
proach the optimal solution. Introducing a short-hand notation for the Ja-
cobian matrix taken at the optimal parameter set, J [opt]

jk ↔ Jjk:

Jjk
df
=

(
∂ethj
∂pk

)∣∣∣∣∣
p=popt

and bj =
[
eexpj − ethj

(
popt

)]
(6)

allows to express, within the Taylor approximation, the χ2(p) using the
Jacobian matrix as

χ2(p) =
Nexp∑

j=1

[
f∑

k=1

Jjk

(
pk − poptk

)
− bj

]2
. (7)

The minimum condition, after shortening the notation Jjk → J , takes now
an algebraic form of

∂χ2

∂pi
= 0→

(
JTJ

) (
p− popt

)
= JT b . (8)

The above expression represents a system of linear equations for the un-
known parameters p. Let us introduce a square matrix A ≡ JTJ ; we have

p = A−1
(
JT b

)
+ popt , (9)
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and it becomes clear that the existence of the solutions depends on the ex-
istence of the inverse matrix A−1. However, one may show that when the
ensemble of parameters of the problem contains correlations (some parame-
ters are functions of some others) some lines (columns) of the Hessian matrix
become linearly dependent and it follows that A has no inverse.

The above result has devastating consequences for the parameter evalu-
ation procedures. This is not so much because of the strict non-existence of
the inverse matrix in question, but rather because of the fact that the ‘practi-
cal’ i.e. numerical calculation of the matrix A in Eq. (9) takes place close to
the singularity point. Under such conditions, the numerical procedures seem
to be working rather satisfactorily, some inverse matrices can be calculated
numerically without computer’s signalling algorithm errors, the equations of
the structure of the ones in (9) — or equivalent — are numerically solved
and, moreover, the resulting r.m.s. deviations may seem acceptable (accord-
ing to the chi-by-the-eye criterion of footnote 4). However, the closeness
to the singularity point implies the instability of the final results: A min-
imal modification of the input conditions such as e.g. slight change of the
experimental input implies divergence of the final result for the ‘optimal
parameters’ — paradoxically, without a big impact on the r.m.s. estimates,
which often remain fairly insensitive to the singularities discussed.

It, therefore, becomes clear that the detection of the presence of paramet-
ric correlations in any given parameter evaluation problem and the research
of physically motivated methods of their possible removal are of primary
importance for the stability of the optimal parametrisation and the implied
predictive power of the modelling. In the following sections, we describe
the results of the Monte Carlo based procedure of the elimination of para-
metric correlations in the case of the spherically symmetric Woods–Saxon
Hamiltonian; we refer to this process as ‘regularisation’.

2.2. Parameters and uncertainty probability distributions

The starting point in the posing of the problem in this section will be
the observation that the energy-positions of each of the so-called experimen-
tal single-nucleon levels are uncertain. The uncertainties are usually repre-
sented by the error bars which, in turn, are directly related to the width
at half maximum of the corresponding Gaussian uncertainty distribution.
This width, as discussed in the preceding section, will be non-negligible in
the considered case since it has to account for not only the purely experi-
mental/instrumental uncertainties but, most of all, of the incompleteness of
the model. Thus, each single-nucleon energy eexpi , which will be used as the
element of sampling (the full set of the input data used for the parameter
optimisation procedures), together with its uncertainty, will be represented
by the Gaussian probability distribution
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Pi (e;σi, e
exp
i ) =

1√
2πσi

exp
[
− (e− eexpi )

2
/2σ2i

]
. (10)

It then follows that the optimal solutions should be represented not only
by the set of numbers {popt} but rather by the corresponding probability
distributions

Pk = Pk
(
pk, p

opt
k

)
. (11)

To illustrate the results of the present pilot project, which can be seen as an
element of a more complete analysis6, we will use the spherical Woods–Saxon
phenomenological mean-field model known to represent the experimental
single-nucleon energies in a realistic manner.

2.3. The Woods–Saxon mean-field model: parameters and motation

For the sake of the presentation of the issue of the parametric correla-
tions, it will be necessary to introduce the corresponding Hamiltonian and
its parameters. The Hamiltonian has the form of

ĤWS = t̂+ V̂cent + V̂so

[
+V̂Coulomb for protons

]
, (12)

where the subscript “so” stands for spin-orbit and t̂ represents the nucleon
kinetic-energy operator, whereas

V̂cent ≡
V cent
n,p

1 + exp
[
−
(
r −Rcent

n,p

)
/acentn,p

] with Rcent
n,p = rcentn,p A1/3 (13)

and
V̂so ≡

1

r

dVso
dr

ˆ̀· ŝ , (14)

with

Vso → Vso(r) ≡
V so
n,p

1 + exp
[
−
(
r −Rso

n,p

)
/ason,p

] with Rso
n,p = rson,pA

1/3 .

(15)
Above we have two sets of parameters, every set containing 6 parameters for
the protons and neutrons each. These parameters are denoted

pn,p ≡
{
V cent
n,p , V so

n,p , r
cent
n,p , rson,p , a

cent
n,p , ason,p

}
, (16)

where the subscripts n and p refer to the neutrons and protons, respectively.
In what follows, the neutron and proton parameter sets are treated as strictly
independent so that the minimisation of the χ2-tests will be performed sep-
arately for the neutrons and for the protons.

6 Such a more advanced analysis involves several nuclei at the same time and includes
dependence of the Gaussian widths on the individual nucleonic quantum numbers
(n, `, j); the corresponding results will be published elsewhere.
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3. Monte Carlo simulations and parametric correlations

To illustrate certain selected mathematical properties of the results of
the parameter determination procedures, we will focus on an example of
the spherical doubly magic 208Pb nucleus. We will introduce the numbers
of experimental levels, N exp

n,p , for the neutrons and protons. The latter are:
N exp

n = 11 for the neutrons and N exp
p = 7 for the protons. The experimental

data used will be the same as those used in Ref. [10].
The energy uncertainty of each single-nucleonic level is defined by spec-

ifying σi, cf. relations of type of Eq. (4), and, in principle, each level has
its own uncertainty characteristics. However, the problem of the individual
characteristics of the uncertainty distributions depending on the individual
sets of quantum numbers {n, `, j}i, i.e., σi ↔ σ(n,`,j)i for each considered
quantum state is a relatively complex one and the corresponding detailed
discussion will be published elsewhere.

The purpose of the following series of illustrations will be two-fold:
Firstly, to detect the presence/absence of parametric correlations and sec-
ondly, to examine the possibilities of the elimination of parameter correla-
tions and its impact on the predictive power of the modelling. To simplify
the analysis from the start, we would like to begin with the search of the
possible absence of certain parametric correlations in the phenomenological
Woods–Saxon Hamiltonian. Next, we would focus on the presence and the
precise form of the existing correlations by expressing, if possible, the depen-
dence of some parameters as function(s) of some others. This problem does
not have any general solution and needs to be examined case-by-case. The
parametric correlations of this type have been studied in the past cf. e.g.
Ref. [12], but in the present case, after having determined the form of the
correlations, we wish to eliminate the dependent parameters and examine
the impact of the implied regularisation of the originally ill-posed problem.
We chose for this purpose, as the testing ground, the Monte Carlo generated
uncertainty distributions of the predicted (calculated) single-nucleon levels.

To follow this strategy, we will introduce a single uncertainty width
σ = const., in Eq. (10), i.e. independent of i, and considered as an aver-
age characteristic which represents at the same time the theoretical and the
experimental uncertainties of the single-nucleon energies. Such an approach
has certain advantages since it allows to look for the presence (or identify
the absence) of possibly systematic tendencies as e.g. an evolution of the
final prediction uncertainties with increasing main shell-number N , or with
the orbital angular momentum ` quantum number, etc.

We will consider fitting the parameters of the Hamiltonian according to
the principles of the Monte Carlo methods: We will generate with the help
of the random number generator a big number, N trial

n,p , of the trial, so-called
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pseudo-experimental level-sets, each set composed of N exp
n,p levels. These sets

will be generated according to the Gaussian distributions of Eq. (10). By
minimising the χ2 function for the neutrons and protons separately, we will
obtain N trial

n,p sextuplets of parameters listed in Eq. (16), i.e.:

Neutrons :
{
V cent
n , rcentn , acentn , V so

n , rson , a
so
n

}
, (17)

for the neutrons and

Protons :
{
V cent
p , rcentp , acentp , V so

p , rsop , a
so
p

}
, (18)

for the protons. As it is well-known, cf. e.g. Refs. [10, 12] and references
therein, several hypotheses related to the possible absence of the parametric
correlations can be verified by the projection techniques. Briefly: Consider
a model depending on parameters {pk} for k = 1, 2, . . . f . With the
help of the Monte Carlo generated f -plets of the parameter sets {pk}n for
n = 1, 2, . . . N trial, we will be able to construct the planar projections of the
type {pkκ , pkρ}. If the corresponding distribution represents approximately
a radial symmetry (cf. figures 1–2), we conclude that parameters pkκ and pkρ
are independent. Conversely, any pattern which can be interpreted as lines
or systems of lines gives rise to the detection of parametric correlations.

As it can be seen from figures 1–2, the shapes of the distributions of
the six-dimensional points projected onto the two-dimensional planes of the
appropriately chosen axes manifest nearly radial symmetry suggesting that
the parameters V cent and acent as well as rcent and acent can be considered
uncorrelated.
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Fig. 1. Results of the Monte Carlo simulations corresponding to the condition
σi = σ = 500 keV and N trial = 50 000. The near radial symmetry of the dis-
tributions of points in these diagrams indicates that the radius parameter and
diffuseness parameter of the Woods–Saxon central potential can be considered un-
correlated. This conclusion applies to the neutron parameters, left-, and to the
proton parameters, right-hand side [see the text for further comments].



62 I. Dedes, J. Dudek

-70 -60 -50 -40 -30

V c
n (MeV)

0.5

0.6

0.7

0.8

0.9

1.0

a
c n

(

f

m

)

208
82Pb126

Parametri Correlation Test

-90 -80 -70 -60 -50

V c
p (MeV)

0.5

0.6

0.7

0.8

0.9

1.0

a
c p

(

f

m

)

208
82Pb126

Parametri Correlation Test

Fig. 2. Illustration similar to that in Fig. 1, but for the test of the possible paramet-
ric correlations between the diffusivity and the potential depth parameters of the
central Woods–Saxon potentials for the neutrons (left) and protons (right). Similar
conclusion applies: These two parameters may be considered uncorrelated.

Analogous illustration for the combination of the radius and the potential
depth parameters is given in Fig. 3 showing parabolic correlations.
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Fig. 3. Illustration analogous to the preceding ones here, however, showing a well-
defined correlations demonstrated to be parabolic as discussed in the text, with
the parabolic fit demonstrating very small r.m.s. values. Here, we have selected
the representation in the form of rcent vs. V cent dependence. Left-hand side shows
the results for the neutrons, right-hand side the ones for the protons.

The parabolic correlations have been demonstrated by a direct fit using
the expressions

rcent = α ∗
(
V cent

)2
+ β ∗ V cent + γ (19)

with the results

α = 0.0001323 fm MeV−2 , β = 0.0302132 fm MeV−1 , γ = 2.6264104 fm
(20)
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for the protons and

α = 0.0003616 fm MeV−2 , β = 0.0499522 fm MeV−1 , γ = 2.7840453 fm
(21)

for the neutrons. Results of the calculations for the spin-orbit potential
parameters (not shown) confirm the independence between the spin-orbit
strength and diffuseness, and the spin-orbit radius and the diffuseness pa-
rameters, and at the same time show the correlations between the strength
and the radius parameters. This latter correlation is a more complex one as
compared to that for the central potential. Since it will not be needed for
the following discussion, those results will not be presented here.

4. Level uncertainty distributions
and elimination of parametric correlations

Whereas determination of the presence and/or of the absence of the
parametric correlations is an essential element of the ex post analysis of any
procedure of the parameter adjustment — such an element can merely be
considered as the first step. In this section, we will present the results of our
Monte Carlo study focussing on the uncertainties of the final predictions of
the single-nucleon levels.

4.1. Prediction uncertainties caused by the input uncertainties

In what follows, we report on the results of eliminating the parametric
correlations in order to examine the possible consequences in terms of the
final prediction uncertainties. The needed information is obtained, in fact,
simultaneously with the Monte Carlo test of the parametric correlations
discussed in the preceding section.

Indeed, when fitting the sixtuplets of parameters in Eqs. (17)–(18), we
also each time obtain the single-particle spectra and this information can
be used to construct the occurrence histograms as the ones shown in the
figures 4 to 7. To construct these histograms, we divide the energy axis into
small intervals and count the number of times each given eigenvalue falls
into any given interval. In this way, we obtain distributions, which after
the normalisation become the uncertainty probability-distribution for each
nucleonic level.
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Fig. 4. The normalised histograms representing the probability distributions of
uncertainties of each individual level in the neutron main shells N = 5 (the group
below the 126-gap) and N = 6 (the group above the 126-gap) in 208Pb. The
two rows of numbers in the upper part of the figure represent two measures of
the half-maximum widths as discussed in the text. These results illustrate the
uncertainties obtained before the removal of the parametric correlations assuming
that the combined theory and experimental input uncertainties are given by σ =

σi = 500 keV.
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Fig. 5. Similar to the preceding one but for the protons in 208Pb.
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Fig. 6. Illustration similar to that in Fig. 4, but for the results obtained after
parametric correlation removal. Observe that the histograms are systematically
narrower as compared to the previous case, what indicates a systematic decrease in
terms of the uncertainties associated with the probability distributions. Moreover,
the two rows of numbers in the upper part of the figure give very similar estimates
what signifies that the structure of the histograms has been markedly ‘purified’ in
the sense that they represent to a good approximation the Gaussian structures, in
the present case.
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Fig. 7. Illustration similar to the one in Fig. 6 but for the protons.
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The histograms have been compared and analysed using two approaches
presupposing the a priori Gaussian nature of the discussed distributions. In
the first case, we directly fit the Monte Carlo generated histograms using
the two-parameter Gaussian form in order to obtain the expected energy
positions ēn`j and the corresponding σ̄n`j-values. In the second case, we
define the expected value of the energy position of the given level ēn`j with
the help of the expressions of the form of

ēn`j =
1

N trial

N trial∑

i=1

[en`j ]i , (22)

whereas the corresponding estimate of the σ̄n`j is defined by

σ̄n`j =





1

N trial

N trial∑

i=1

[
(en`j)i − ēn`j

]2




1/2

. (23)

For the ideal Gaussian distributions and the very large numbers of trials,
the two ways of evaluation should give the same results. However, in the
case of perturbed-Gaussian form of the histograms, differences are to be
expected. The first rows in the figures marked with ‘2.335 σ̄’ give the results
obtained using Eq. (23), whereas the second ones give the results of the direct
fitting.

The results in figures 4 and 5 were obtained before the parametric corre-
lation removal. They indicate that the widths of the distributions estimated
using the two approaches may differ considerably. This can be qualified as
representing certain ‘contamination’ of the Gaussian structure of the corre-
sponding histograms.

Comparison of the results in figures 4 and 6, i.e., before and after the
parametric correlation removal (here: for the neutrons) indicates the pres-
ence of a couple of characteristic tendencies. Firstly, the corresponding
widths are systematically narrower after the parameter correlation removal.
Secondly, the width estimates for the single-particle level uncertainties ob-
tained with the help of two algorithms introduced above lie systematically
closer to each other after the parameter removal signifying a ‘cleaner’ Gaus-
sian form of the considered distributions.

The results for the protons are similar to the ones for the neutrons as
can be seen from comparison of figures 5 and 7.

5. Summary and conclusions

We have presented examples of an analysis of the adjustment of the phe-
nomenological mean-field Hamiltonian parameters focussing on the deter-
mination of the parametric correlations by using the Monte Carlo approach
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and examining their consequences for the predictive power of the modelling.
The main purpose of this article is to present and illustrate our realisation
of the mathematical and numerical applications of the Monte Carlo methods
in the regularisation of the ill-posed inverse problems which, to our knowl-
edge, is the first attempt of this kind in the nuclear mean-field context. For
the purpose of this illustration, we have used a simple but realistic Woods–
Saxon Hamiltonian applied to the analysis of single-nucleon levels in the
doubly magic 208Pb nucleus.

We have focussed on the a priori known parametric correlations of
the Woods–Saxon type between the central-potential radius and central-
potential depth parameters, rcent and V cent, respectively, and profited from
the fact that the third, the diffusivity parameter acent is not correlated with
the others. This offers a ‘scholarly’ test ground for this type of consid-
erations. We have eliminated the resulting parabolic dependence rcent =
rcent(V cent) by reducing the number of fitting parameters from 6 [cf.
Eqs. (17)–(18)] to 5. Next, we have used as the testing-tool the histograms
characterising the uncertainties of the predicted positions of the single par-
ticle levels and compared their widths obtained using the Monte Carlo sim-
ulations before and after the removal of the parametric correlations. Our
preliminary tests indicate that the removal of the parametric correlations
leads to narrowing the uncertainty probability distributions thus suggesting
an improvement in terms of predictive power.

The generalisation to the more realistic situations involving simultane-
ously more parameters and other forms of the Hamiltonian is in progress
and will be published elsewhere.
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