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The self-consistent quasiparticle random phase approximation (QRPA)
plus quasiparticle-vibration coupling (QPVC) with Skyrme interactions is
used to describe the Gamow–Teller (GT) response in open-shell nuclei.
The effect of superfluidity, including both the isoscalar spin-triplet and the
isovector spin-singlet pairing interactions, is taken into account in both the
ground state and the excited states. Zero-range pairing forces of volume-
type and surface-type are both used in our investigation. The phonon
properties and GT strength distributions obtained with either type of force
are compared, by taking the superfluid nucleus 120Sn as an example. In
both cases, a spreading width is developed, and the agreement with ex-
perimental data of the strength distribution in 120Sn is improved with the
inclusion of QPVC effect.
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1. Introduction

As one of the most important spin–isospin excitation modes, the Gamow–
Teller (GT) excitation not only provides useful constraints on the spin–
isospin channel of nuclear effective interaction, but also plays an important
role in the nuclear weak interactions processes [1, 2], such as β decay [3],
electron capture [4, 5] and neutrino nucleus scattering [6, 7].
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Two kinds of microscopic approaches are widely used in the study of GT
excitations, which are the shell model and the random-phase approximation
(RPA) approach (or quasiparticle RPA (QRPA) for superfluid nuclei). Due
to the large configuration space, accurate shell model calculations are not
feasible for heavy nuclei away from magic numbers [2, 8, 9]. The QRPA ap-
proach can be applied to all nuclei in principle except for a few very light
systems. The self-consistent QRPA approach based on Skyrme [10–16] or
relativistic [3, 17–19] density functionals successfully reproduces the over-
all properties of charge-exchange excitations like the centroid energy if the
energy density functional is properly calibrated.

However, the width of GT resonance cannot be described in a satisfac-
tory way within the QRPA model. In QRPA, the GT excitation is treated as
a superposition of two quasiparticle (2qp) excitations and, therefore, cannot
account for the spreading width, which originates form the transfer of energy
and angular momentum from the collective motion to more complicated nu-
clear states having 4qp, . . . , nqp character. More complicated configurations
should be included in the model space. One way is to include the quasipar-
ticle vibration coupling (QPVC) effect in the QRPA model, which forms the
so-called QRPA+QPVC model. In the QRPA+QPVC model, the 2 quasi-
particle configurations are coupled to collective vibrational phonons [20–22].
As a first step, the self-consistent RPA+particle vibration coupling (PVC)
approach without pairing correlations for GT excitations was established
within both the relativistic [23,24] and the non-relativistic framework [25,26].
It has been shown that a spreading width is developed with the inclusion of
PVC effects, and thus a good agreement with experimental data for the GT
resonance (GTR) is obtained. The RPA+PVC model has been further ap-
plied to β decay [27], and it greatly improves the β-decay half-lives in magic
nuclei compared to the RPA result. The pairing correlations were then also
included, and the self-consistent QRPA+QPVC model was developed based
on the Skyrme or relativistic density functionals. This model has been ap-
plied for the study of GT excitations in superfluid nuclei [28,29]. In Ref. [28],
the GT excitation in 120Sn was studied by using a density-dependent, zero-
range surface pairing force within the Skyrme density functional framework.

In this work, we will study the GT excitation in 120Sn with QRPA and
QRPA+QPVC models based on a Skyrme density functional using a zero-
range pairing force of volume or of surface character, and we will compare
the corresponding results, such as phonon properties and GT strength dis-
tributions.

2. Formulas

Firstly, a HFB calculation is performed to obtain the properties of quasi-
particles. Then the charge-exchange QRPA model is used to get the GT
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strength. The detailed formulas of charge-exchange QRPA on top of HFB
can be found in Ref. [10]. The isovector T = 1 pairing is included both in
the ground state and in the residual interaction used in the QRPA calcula-
tion. Moreover, the isoscalar T = 0 pairing is also included in the residual
interaction in the QRPA calculation. The necessity of isoscalar T = 0 pair-
ing has been discussed in many previous works, especially in connection
with the low-lying GT strength of N = Z + 2 nuclei and the β-decay half-
lives [3, 10, 30–34]. The pairing force we use is a zero-range pairing force
parameterized as follows:

VT=1(r1, r2) = V0
1− Pσ

2

(
1− ηρ (r)

ρ0

)
δ(r1 − r2) , (1)

VT=0(r1, r2) = fV0
1 + Pσ

2

(
1− ηρ (r)

ρ0

)
δ(r1 − r2) , (2)

where r = (r1 + r2)/2. ρ0 is taken to be ρ0 = 0.16 fm−3, and Pσ is the
spin exchange operator. η = 0 or 1 represents volume or surface pairing.
The pairing strength V0 is determined in such a way that it can reproduce
the experimental pairing gap for the nucleus to be studied, like 120Sn in this
paper. In the T = 0 channel, the pairing strength cannot be constrained
from the ground-state calculation as in the T = 1 channel, however, several
different types of analysis suggest the value of proportionality factor f to be
close to 1, or slightly larger [35]. Accordingly, in this work we adopt f = 1.

The QRPA+QPVC equation reads(
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(3)
D is a diagonal matrix containing the physical QRPA eigenvalues. The Ai
matrices are complex and energy-dependent, associated with the coupling
to the doorway states. The expressions of Ai in the QRPA basis |n〉 are
given by
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∑
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X
(n)
ab and Y

(n)
ab are the forward-going and backward-going amplitudes

associated with the QRPA eigenstates |n〉, respectively. Here and in what
follows, the indices a, b label the so-called BCS quasiparticle states in the
canonical basis that are those defined by the operators α and α† at p. 248 of
Ref. [36]. Note that the T− and T+ channels are coupled in the QRPA and
QRPA+QPVC matrices, when both protons and neutrons are superfluid,
at variance with the case of RPA and RPA+PVC (and with the case in
which only one of the two species is superfluid, as in 120Sn). The matrix(
D +A1(E) A2(E)
A3(E) D +A4(E)

)
is still symmetric as in the RPA+PVC case.

The spreading matrix W ↓ab,a′b′(E) is the most important quantity in the
QRPA+QPVC model,

W ↓ab,a′b′=〈ab|V
1

E − Ĥ
V
∣∣a′b′〉=

∑
NN ′

〈ab|V |N〉〈N | 1

E − Ĥ
∣∣N ′〉 〈N ′∣∣V ∣∣a′b′〉 ,

(8)
where |N〉 = |a′′b′′〉 ⊗ |nL〉 represents a doorway state and a′′, b′′ are BCS
quasiparticle states, as recalled above. The doorway states are made of a
two-BCS-quasiparticle excitation |ab〉 coupled to a collective vibration |nL〉
of angular momentum L and energy ωnL. The properties of these collec-
tive vibrations, i.e., phonons |nL〉, are obtained by computing the QRPA
response with the same Skyrme interaction, for states of natural parity
Lπ = 0+, 1−, 2+, 3−, 4+, 5−, and 6+. We have retained the phonons
with energy less than 20 MeV and absorbing a fraction of the non-energy
weighted isoscalar or isovector sum rule (NEWSR) strength larger than 5%.

The final expression for spreading matrix in angular momentum coupled
form W ↓Jab,a′b′ reads

W ↓J1ab,a′b′ = δbb′δjaja′
1
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,
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W ↓J4ab,a′b′ = (−)ja′+jb′+J
{
ja′ jb′ J
jb ja L

}
×
∑
nL

〈a||V ||a′, nL〉〈b′||V ||b, nL〉
E − [ωnL + Ea′ + Eb ± (λn − λp)] + i∆

. (9)

In the above formulas, we use the identity matrix instead of the C trans-
formation matrix which transforms HFB quasiparticles to BCS quasiparti-
cles [28]. This represents a good approximation for nuclei not far from the
stability line, like the nucleus 120Sn studied in this work. ĵ2i is a shorthand
notation for 2ji + 1. Ea is the BCS quasiparticle energy. The chemical po-
tential difference λn−λp is included in the energy denominator so that it can
reproduce the RPA+PVC limit for magic nuclei, where the sign ‘+’ is for T−
excitations and ‘−’ for T+ excitations. The smearing parameter ∆ is intro-
duced to avoid singularities in the denominator, and a convenient practical
value is ∆ = 200 keV. The detailed formulas can be found in Ref. [28].

The subtraction method, to avoid the double counting problem in the
QPVC calculation [37–41], is used in the QPVC calculation.

3. Results and discussions

We use the Skyrme interaction SGII [42]. This will be useful, in order
to assess the dependence of the results on the particular effective inter-
action which has been adopted, by comparing them with previous studies
carried out with the SkM* interaction [28]. In the HFB calculation, we use a
quasiparticle energy cutoff of 200 MeV and a maximum angular momentum
jmax = 15/2. The HFB equation is solved in coordinate space with a box
radius of 20 fm. We use both the volume pairing and surface pairing, and
the pairing strength is adjusted to reproduce the value of average neutron
pairing gap ∆n = 1.34 MeV in 120Sn derived from the empirical odd–even
mass difference.

In Table I, the properties of phonons with different multipolarities cal-
culated by QRPA model with surface and volume pairing are shown. Al-
though the same neutron paring gap is obtained, the surface and volume
pairing give different energies and transition probabilities. The volume pair-
ing gives a smaller phonon energy which is closer to experimental data for
the quadrupole case, but also a smaller transition probability for which the
agreement with experimental data is worse, compared to the surface pairing
case.
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TABLE I

The energy and reduced transition probability of the lowest phonons of different
multipolarities included in the QRPA+QPVC calculation for 120Sn. The experi-
mental data are taken from NNDC [43]. The theoretical results are obtained by
the QRPA approach with the interactions SGII with surface pairing and volume
pairing.

E [MeV] B(EL, 0→ L)
[
e2 fm2L

]
Phonons Exp. Surface Volume Exp. Surface Volume

2+ 1.171 1.941 1.497 2.016× 103 1.766× 103 1.364× 103

3− — 3.313 2.500 — 1.396× 105 1.380× 105

4+ — 3.757 2.478 — 1.568× 106 4.518× 105

In Fig. 1, the Gamow–Teller strength distribution in 120Sn is calculated
in the QRPA model and in the QRPA+QPVC model respectively. The
results using volume pairing and surface pairing force are compared. At the
QRPA level, the GT strength distributions in the low-energy region obtained
by using volume and surface pairing force are similar. In the giant resonance
region, the basic feature is the same where three peaks are present, however,
for the volume pairing case, the strength of the third peak is the highest,
while for the surface pairing case, the middle peak has the highest transition
strength. Going from QRPA to QRPA+QPVC, a large spreading width
of about 4.5 MeV is developed for either pairing force, and the difference
between the results obtained from two types of pairing force becomes smaller.
In the GTR region E = 13–25 MeV, the centroid energies obtained in QRPA
with the volume and the surface pairing force are 16.97 and 17.00 MeV
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Fig. 1. Gamow–Teller strength distribution in 120Sn calculated in the QRPA [panel
(a)] and in the QRPA+QPVC [panel (b)] model with volume and surface pairing,
using the Skyrme interaction SGII.
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respectively, while they become 16.87 and 16.89 MeV in QRPA+QPVC.
The stability of the centroid found going from QRPA to QRPA+QPVC is
related to the use of the subtraction method in the present calculation.

In Fig. 2, the Gamow–Teller strength distributions obtained with sur-
face pairing and volume pairing are compared with experimental data. We
use a smearing parameter ∆ = 0.5 MeV in the QRPA and QRPA+QPVC
calculation, instead of the value ∆ = 0.2 previously used in Fig. 1. This
value corresponds to the energy resolution of the (p, n) experiment [44].
The cross section from (p, n) reaction is normalized by the unit cross section
to give the strength distribution shown in Fig. 2 [28]. Going from QRPA
to QRPA+QPVC, a much larger width is developed for both pairing forces,
leading to a much better agreement with experimental data. However, the
agreement with data is not as good as that calculated with the interaction
SkM* [28].
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Fig. 2. Gamow–Teller strength distribution in 120Sn calculated by QRPA and
QRPA+QPVC model with surface [panel (a)] and volume [panel (b)] pairing, using
Skyrme interaction SGII. The smearing parameter ∆ = 0.5 MeV is used instead of
∆ = 0.2 MeV used for Fig. 1. The experimental data [44] from (p, n) reaction are
shown for comparison.

4. Summary

The GT excitation of 120Sn is studied by the self-consistent QRPA+
QPVC model based on the Skyrme density functional SGII. Two different
zero-range pairing forces, of volume- and surface-type, are employed in the
calculations, and the resulting phonon properties and the GT strength dis-
tribution obtained with either force are compared. It turns out that the over-
all properties of the GT strength distribution calculated by QRPA+QPVC
model with these two types of pairing forces are similar, although there are
some differences in the details of the fragmentation process. With the inclu-
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sion of QPVC effect, a large spreading width is developed, and the agree-
ment of the theoretical GT strength distribution with the experimental data
is improved.
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