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We discuss advanced statistical methods to improve parameter estima-
tion of nuclear models. In particular, using the Liquid Drop Model for
nuclear binding energies, we show that the area around the global χ2 min-
imum can be efficiently identified using the Gaussian Process Emulation.
We also demonstrate how the Markov-chain Monte Carlo sampling is a
valuable tool for visualising and analysing the associated multidimensional
likelihood surface.
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1. Introduction

In general, nuclear models contain parameters that must be determined
to best reproduce experimental results. These parameters are typically ad-
justed on data by means of a least-square procedure [1–4], or more gener-
ally, using a Maximum Likelihood Estimator (MLE) [1]. MLE provides us
essential information about the estimated parameters, such as errors and
correlations. We refer to Ref. [3] for a more detailed discussion.

With an MLE, there are two main challenges: how to find the maxi-
mum in the parameter space, especially in the case of mutlimodal likelihood
surfaces [5] and how to provide realistic estimates of errors.

In the present article, we discuss the benefit of using the statistical mod-
elling method Gaussian Process Emulation (GPE) [6–8] and the Expected
Improvement (EI) criterion [9, 10] to explore the likelihood surface [1, 2, 11]
and identify the location of the maximum in parameter space. GPE has
already been adopted in several scientific domains to facilitate the use of
computationally expensive models [10, 12–14]. It has also been recently
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applied to nuclear physics [15–17]. In this paper, we combine GPE with the
EI criterion to estimate the parameters of a Liquid Drop Model (LDM) [18].
Through the Markov-chain Monte-Carlo (MCMC) sampling, we explain how
to visualise the multidimensional likelihood surface and extract the covari-
ance matrix without calculating explicitly the Hessian matrix [3].

The article is organised as follows: in Section 2, we introduce the basic
formalism of GPE statistical method. In Section 3, we present the LDM and
in Section 4, we demonstrate how GPE and EI can be used to iteratively find
the maximum of the unimodal likelihood of the LDM. We finally provide our
conclusions in Section 5.

2. Gaussian Process Emulation and Expected Improvement

Gaussian Process Emulation (GPE) is a regression method that performs
a smooth interpolation of the points ys of a data set, providing associated
confidence intervals. In a standard fitting procedure, one assumes a fixed
relation between the independent variable x and the points ys = f(x|p),
where p represents a set of adjustable parameters. It is not the case with
GPE, where we treat the points ys as a draw from a Gaussian process (GP),
y with mean 0 and covariance R(x,x′). See Ref. [10] for a more general
discussion.

We still need to make some assumption about the structure of the data.
Such an assumption is done for GPE on the structure of the covariance ma-
trix. In the present article, we assume that the latter is filled with the squared
exponential covariance function, so that each matrix element corresponds to

R
(
x,x′

)
= σ2k

d∏
i=1

exp

(
−(x− x′)2

2θ2i

)
, (1)

where d is the number of parameters and x,x′ are the data points.
We choose to emulate normalised training data to avoid numerical issues

that can arise during emulation. We, therefore, set the maximum covariance
to be σ2k = 1. The hyperparameters θi, often referred to as correlation lengths
or length scales, describe the level of smoothness of the emulated surface
along each dimension of the parameter space. These hyperparameters are
adjusted on training data using an MLE method. We refer to Ref. [8] for
more details. Given the particular Gaussian form of the covariance matrix
in Eq. (1), we observe that neighbouring points will be strongly correlated,
while points that are far from each other will be uncorrelated. The length
scale controls how fast such a correlation drops moving away from a given
point and, therefore, moving away from the diagonal of the covariance ma-
trix.
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The GPE prediction at an unknown location x∗ is

µ̂(x∗) = rT (x∗)R−1y , (2)

where r(x∗) = R(x,x∗) corresponds to the vector filled with the correlation
of x∗ with all the data points. GPE also easily provides the 1σ confidence
intervals as

σ̂(x∗) = R(x∗,x∗)− rT (x)R−1r(x) . (3)

These formulas ignore possible uncertainties on the points ys since we as-
sume here that they come from a deterministic computer simulation. It is,
however, possible to take them into account into the GPE procedure [19].
In the following section, we introduce a model that will be used to illustrate
how the GPE practically works.

3. Liquid Drop Model

The LDM is a simple model that links the binding energy Bth of a given
nucleus to its number of neutrons N and protons Z. It is composed of
five adjustable parameters p = {av, as, ac, aa, ap} that are related to bulk
properties of the nucleus and defined as [18]

Bth(N,Z) = avA− asA2/3 − ac
Z(Z − 1)

A1/3
− aa

(N − Z)2

A
− apδ(N,Z) , (4)

where A = N + Z, and

δ(N,Z) =


+A−1/2 for Z,N even ,
0 for A odd ,
−A−1/2 for Z,N odd .

(5)

To determine the optimal set of parameters p0, we construct the penalty
function

χ2 =
∑

N,Z∈data

(Bexp(N,Z)−Bth(N,Z))
2

σ2(N,Z)
(6)

to be minimised. The experimental energies, Bexp(N,Z), are extracted from
Ref. [20]. Since Eq. (4) is not suitable for describing light systems, we exclude
all nuclei with A < 16. We also choose not to take into account those with
experimental errors on binding energies larger than 100 keV. This LDM
model has a large variance of a few MeV on average [21, 22] making the
residuals larger than any experimental errors. The weights in Eq. (6) are,
therefore, unimportant and we have fixed them as σ2(N,Z) = 1 for all
nuclei. We also recall for the sake of clarity that the χ2 function is directly
linked to the likelihood function as L ∝ e−χ2 .
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4. Results

As a start, we explore the likelihood surface associated to our penalty
χ2 function using the No-U-Turn Sampler (NUTS) [23], an efficient Markov-
chain Monte Carlo (MCMC) sampler [24]. In Fig. 1, we present the margin-
alised likelihood in vicinity of the maximum for individuals parameters on
the diagonal part and the contour plots for pairs of parameters off the diag-
onal. The best estimation of LDM parameters with error bars, extracted as
the 68% percentile of each parameter distribution, are given on top of each
column.
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Fig. 1. Corner plot of the exact likelihood surface in vicinity of the maximum.
The diagonal plots show the parameters distributions. The central dashed line
corresponds to the mean of the distribution, while the side ones delimit the 1σ

interval. The off-diagonal plots show the correlation between the two parameters.
See the text for details.
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The marginalisation of the likelihood [15] provides us with a very useful
insight on the behaviour of the likelihood surface. Given its exponential
nature, the MCMC algorithm is the most suitable technique to perform the
required multidimensional integrals leading to the marginalisation. From
the resulting distributions of the parameters p, we can extract information
about correlations. In particular, we have been able to directly extract the
covariance matrix without performing any derivative in parameter space [1].
In Table I, we provide the correlation matrix extracted from MCMC. We
observe that the results are in perfect agreement with the correlations ob-
tained using Non-Parametric Bootstrap [22], which is also a Monte Carlo
sampling based on the log-likelihood function. For this particular model,
we observe a strong correlation among the parameters av, as, aa, ac that
also reflects on the cigar-like shape of the marginalised likelihood shown in
Fig. 1. The pairing term is not correlated to the others, thus the marginal
likelihood has a spheroid shape.

TABLE I

Correlation matrix for LDM parameters obtained from MCMC sampling.

av as ac aa ap

av 1
as 0.993 1
ac 0.984 0.962 1
aa 0.917 0.901 0.884 1
ap 0.038 0.037 0.040 0.038 1

The MCMC is a valuable tool to explore the surface of the unimodal
likelihood, but in the case of a multimodal one, it may not be the most
efficient method. A possible way to solve the issue is to use the GPE method
to emulate the likelihood surface together with the Expected Improvement
(EI) criterion [9] to focus the exploration around the maxima.

The EI criterion helps us to choose iteratively the points in parameter
space one should explore in order to efficiently find a global optimum of a
function. It is an optimisation technique which, after a large enough number
of iterations, will converge to the global optimum, never getting stuck into a
local optimum. It uses both the GPE mean and GPE confidence intervals, in
a tradeoff between exploitation and exploration. The first means sampling
areas of likely improvement near the current optimum predicted by the mean,
the second means sampling areas of high uncertainty, where the confidence
intervals are large. It employs an acquisition function, whose maximum tells
us where next in parameter space to run our model. GPE is then performed
again with this new point, and this process is repeated until convergence is
reached according to a given convergence criteria.
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For the sake of illustration, we fix three parameters, ac, aa, ap, of LDM
at values obtained from MCMC and emulate the log-likelihood surface, i.e.
the χ2, as a function of the remaining two parameters av, as.

We design the initial data set by taking 60 points for each dimension to
ensure a good quality emulation from the outset of the optimisation. We
impose a uniform prior distribution on parameter space, by restricting to
a fairly large interval av(s) ∈ [0, 30] MeV. The data set is selected using a
standard space-filling method [25]. After running GPE, we feed the resulting
likelihood surface to the MCMC sampler. The result is illustrated in Fig. 2.
In the top left panel, we show the result obtained using the initial data set,
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Fig. 2. Corner plots of the likelihood obtained from the emulated χ2 surface for
the av and as parameters, after the first (top left), 11 (top right), 21 (bottom left)
and 51 (bottom right) iterations of EI. See the text for details.
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i.e. without any EI. We notice that the means of the av and as distribution
are quite different from the expected optimal values (see Fig. 1), that we
attribute to an incorrect emulation of the likelihood surface.

We now apply an iterative procedure guided by EI: in the top right panel,
we add extra 11 points and then we perform a new MCMC run. In this case,
the volume parameter gets extremely close to its optimal value and errors.

The iterative EI procedure was then carried out in the bottom left panel
(21 iterations) and bottom right (51 iterations) until the mean value of the
distributions of the parameters av, as falls within the error bars provided by
the complete MCMC sampling. As expected, in the limit of large number
of points, GPE will provide a very good approximation of the exact surface.

5. Conclusions

In this article, we have explained how advanced statistical methods may
be a very useful tool to estimate parameter in theoretical nuclear models.
By using a simple Liquid Drop Model, we have discussed the use of MCMC
method to visualise multidimensional likelihood surfaces and how to extract
information concerning the covariance matrix without performing numerical
derivatives in parameter space. This is a very interesting method, since
contrary to the standard Hessian method [26], we do not need to assume a
parabolic shape of the surface around the optimum.

Since MCMC is likely to not adequate deal with multimodal likelihood
surfaces, we have also investigated the use of GPE combined with the EI
to identify in an efficient way the position of the optimum in parameter
space and then use the MCMC to obtain informations on the parameter
distributions. By combining these two methods, we now plan to perform a
more complete study using the likelihood surface of a Skyrme functional [27].

The work is supported by the UK Science and Technology Facilities
Council under grants No. ST/L005727 and ST/M006433.
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