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ANALYTIC SOLUTIONS OF THE RIEMANN PROBLEM
IN RELATIVISTIC HYDRODYNAMICS

AND THEIR NUMERICAL APPLICATIONS∗
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We present an analytic solution of the Riemann problem for the equa-
tions of relativistic hydrodynamics with the ultra-relativistic equation of
state and non-zero tangential velocities. A 3 dimensional numerical code
solving such equations is described and then tested against the analytic
solution.

PACS numbers: 47.75.+f, 47.40.Nm, 47.85.–g

1. Introduction

Solutions of the hydrodynamical Riemann problem were introduced to
the numerical hydrodynamics by Godunov already in 1959 [1]. After 50 years
their significance is hard to be overestimated. Especially in the numerical
relativistic hydrodynamics, most of the so-called high resolution shock cap-
turing schemes is based on the modifications of the original Godunov idea
(for a good review on this issue see [2]).

In general, by a Riemann problem for a set of hyperbolic partial differen-
tial equations we understand an initial value formulation, where the initial
data consist of two constant states separated by a discontinuity in the form
of a plane surface. An elementary introduction and some theorems on such
a general case can be found in [3]. Since in his original paper Riemann was
concerned with equations of motion of the inviscid fluid, it is also customary
to refer to the Riemann problem as a problem in hydrodynamics [4].

The special case of the relativistic Riemann problem, where the gas in
both initial states is assumed to be at rest with respect to a chosen iner-
tial frame, was first considered by Thompson in [5]. The general Riemann
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problem with arbitrary velocities, but in one dimension only, was solved by
Smoller and Temple [6] for the ultra-relativistic equation of state and by
Martí and Müller [7] for the perfect gas equation of state. The latter work
was generalized to the case of arbitrary initial velocities, also tangent to the
initial discontinuity, by Pons, Martí and Müller in [8].

At this point the relativistic hydrodynamics differ strongly from its New-
tonian counterpart. The solution of the Newtonian Riemann problem is
independent of the velocities tangent to the initial discontinuity and the
whole problem can be treated in just one spatial dimension. In the rel-
ativistic case all components of the velocity couple to other hydrodynamic
quantities through Lorentz factors, and even the wave pattern of the solution
can depend on the tangent velocity.

A solution analogous to that of Pons, Martí and Müller has recently been
obtained for ultra-relativistic equation of state by Piętka and the author
in [9]. Due to the simplicity of the ultra-relativistic equation of state, this
solution can be expressed almost entirely in analytical terms, and as such it
can be used both to construct and test modern multidimensional numerical
codes solving equations of hydrodynamics.

Our original motivation for dealing with solutions of the Riemann prob-
lem was to construct a numerical scheme that could be used in simulations
of cosmological hydrodynamical perturbations in the radiation-dominated
universe. It is, however, worth pointing out that the issue is not only nu-
merical. Recently, Aloy and Rezzolla used a solution of the Riemann problem
with non-vanishing tangential velocities discussed in [8] to explain a purely
hydrodynamical mechanism boosting astrophysical relativistic jets to large
Lorentz factors [10].

The ultra-relativistic equation of state, commonly used in cosmology,
has the form p = kρ, where p is the pressure, ρ the energy density, and
k ∈ (0, 1) is a proportionality constant (

√
k can be interpreted as the local

sound velocity). On the other hand, most numerical codes are adjusted to
equations of state depending explicitly on the baryonic (rest-mass) density
n and the specific internal energy ε (satisfying ρ = n+nε). This is, for
instance, the case of the standard perfect gas equation of state of the form
p = (γ−1)nε, where γ is a constant. Although the ultra-relativistic equation
of state can be viewed as a limit of the perfect gas equation of state with
n → 0, ε → ∞ and nε = const., a numerical code has to be rewritten in
order to evolve a fluid with the ultra-relativistic equation of state.

In this paper we will summarize the analysis given in [9], and then de-
scribe the construction of a 3 dimensional relativistic hydrodynamical code
with the ultra-relativistic equation of state. We will also show the results of
tests of this code against the presented exact solution.
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2. Equations of relativistic hydrodynamics

Equations expressing the conservation of the energy and momentum in
the relativistic hydrodynamics can be written as

∂µT
µν = 0 , (1)

where
Tµν = (ρ+ p)uµuν + pηµν

is the energy-momentum tensor of the perfect fluid. In this formula ρ denotes
the energy density, p is the pressure, uµ are the components of the four-
velocity of the fluid, and ηµν = diag(−1,+1,+1,+1) is the metric tensor of
the Minkowski space-time1.

For barotropic equations of state of the form p = p(ρ) the above equa-
tions constitute a complete set of relevant equations of hydrodynamics. How-
ever, if the equation of state depends explicitly on the rest-mass density n
(which is the case for the perfect gas equation of state) we also have to take
into account the continuity equation, i.e.,

∂µ(nuµ) = 0 . (2)

Thus, the set of the equations of hydrodynamics is different for those two
cases, and this difference becomes especially important if we allow for dis-
continuous solutions. In the following we will restrict our attention to the
ultra-relativistic equation of state of the form p = kρ.

Since we aim at solving the general Riemann problem, it is convenient
to express equations (1) in the form

∂tU + ∂iF
i = 0 , (3)

where

U =
(
(ρ+ p)W 2 − p, (ρ+ p)W 2v1, (ρ+ p)W 2v2, (ρ+ p)W 2v3

)T
, (4)

and

F i =
(

(ρ+ p)W 2vi, (ρ+ p)W 2viv1 + δi1p ,

(ρ+ p)W 2viv2 + δi2p, (ρ+ p)W 2viv3 + δi3p
)T

.

Here W denotes the Lorentz factor W = u0, and vi are the components of
the three-velocity vi = ui/W (note that W = 1/

√
1− vivi).

1 We will work in Cartesian coordinates in this paper. We will also assume a convention
in which Greek indices refer to the space-time dimensions µ = 0, 1, 2, 3 while Latin
ones are reserved for spatial dimensions only i = 1, 2, 3.
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3. Solutions of the Riemann problem

We will now search for the solutions of the Riemann problem for equa-
tions (1). Without loss of generality, we can assume that the initial discon-
tinuity is perpendicular to the x axis, and it is located at x = 0. Thus, due
to the translational symmetry of the initial data in the directions y and z,
equations (1) can be reduced to

∂t
(
(ρ+ p)W 2 − p)+ ∂x

(
(ρ+ p)W 2vx

)
= 0 ,

∂t
(
(ρ+ p)W 2vx

)
+ ∂x

(
(ρ+ p)W 2(vx)2 + p

)
= 0 ,

∂t
(
(ρ+ p)W 2vy

)
+ ∂x

(
(ρ+ p)W 2vxvy

)
= 0 ,

∂t
(
(ρ+ p)W 2vz

)
+ ∂x

(
(ρ+ p)W 2vxvz

)
= 0 . (5)

The structure of solutions of the Riemann problem for the set of equa-
tions (5) is similar to that obtained in the Newtonian case. In general, the
initial discontinuity can decay into three kinds of elementary waves (not all
of them have to be present in the solution) propagating along the x direction
and separated by some constant states. One of those waves, the so-called
rarefaction wave, is a smooth self-similar solution of (5). The other are two
discontinuities: a shock wave and a contact discontinuity. The distinction
between them is based on the behavior of the pressure p and velocity vx,
which can be discontinuous at a shock wave and have to be equal on both
sides of a contact discontinuity. In fact, the only quantities that can ex-
hibit a jump at the contact discontinuity in the case of the ultra-relativistic
equation of state are vy and vz.

Denoting the Riemann states, that is the initial data for x < 0 and
x > 0 by L and R, respectively, we can symbolically write the solution
of the Riemann problem as LR → LW←L∗CR∗W→R. Here the subscript
arrows refer to the direction from which the particles of the fluid enter the
wave W, which, in turn, can be either a rarefaction wave R or a shock wave
S (four different wave patterns corresponding to W←(→) = S←(→), R←(→)

are possible). The symbol C denotes a possible contact discontinuity and
L∗, R∗ are some intermediate constant states.

The exact form of the solution can be found by considering the depen-
dence of the energy density ρ on the velocity vx behind the waves W← and
W→. (The exact form of this function depends on the states L and R in
front of the waves.) Since at the contact discontinuity only vy and vz can
be discontinuous, we must have ρL∗(vxL∗) = ρR∗(vxR∗

). It turns out that the
solution of this equation allows us to establish the solution in the interme-
diate states L∗ and R∗, and the precise form of W←(→). In the forthcoming
sections we will derive the required relations ρ(vx) for both rarefaction and
shock waves.
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3.1. Rarefaction wave

Let us consider a rarefaction wave, that is a smooth solution of (5) de-
pending on x and t through ξ = x/t. Under such an assumption the equa-
tions (5) can be reduced to

ξ
d

dξ

(
(ρ+ p)W 2 − p) =

d

dξ

(
(ρ+ p)W 2vx

)
,

ξ
d

dξ

(
(ρ+ p)W 2vx

)
=

d

dξ

(
(ρ+ p)W 2(vx)2 + p

)
,

ξ
d

dξ

(
(ρ+ p)W 2vy

)
=

d

dξ

(
(ρ+ p)W 2vxvy

)
,

ξ
d

dξ

(
(ρ+ p)W 2vz

)
=

d

dξ

(
(ρ+ p)W 2vxvz

)
. (6)

Non-trivial solutions to the above homogeneous set of ordinary equations
exist only if the Wronskian of the whole system vanishes, i.e., when ξ are the
eigenvalues of the Jacobian ∂F x/∂U . These eigenvalues can be computed
yielding

ξ0 = vx , ξ± =
vx(1−k)±√k√(1−vivi) (1−vivik−(vx)2(1−k))

1−vivik , (7)

where the eigenvalue ξ0 is twofold degenerate [9]. In the special case with
vy = vz = 0, the eigenvalues ξ± can be expressed as

ξ± =
vx ±√k
1±√kvx ,

where
√
k can clearly be identified with the local speed of sound (in the lin-

earized picture the eigenvalues of ∂F x/∂U can be interpreted as the speeds
of propagation of acoustic signals).

It can be shown next that for ξ 6= vx one have

ρκWvy = const., ρκWvz = const. ,

where κ = k/(1 + k). An assumption that ξ = vx leads to the contact dis-
continuity, which will be discussed later. Introducing the tangential velocity
vt =

√
(vx)2 + (vy)2, we can show that vt = aW−1ρ−κ, where a denotes

a constant.
At this stage equations (6) can be integrated. For a = 0 (no tangential

velocities) one obtains (
1 + vx

1− vx
)± 1

2

= C1ρ
(κ/
√
k) ,
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while for non-zero tangential velocities we get(
1 + vx

1− vx
)±1

= C2

(
1 +

√
1 + (1− k)a2ρ−2κ

1−√1 + (1− k)a2ρ−2κ

)(1/
√
k )

×
√
k −√1 + (1− k)a2ρ−2κ

√
k +

√
1 + (1− k)a2ρ−2κ

,

where C1 and C2 are integration constants, that can be computed knowing
the state in front of the wave (for more details concerning this solution
see [9]).

3.2. Shock wave

The solution in the form of a shock wave can be obtained from the
appropriate Rankine–Hugoniot conditions. For the set of equations (1) they
can be expressed

[[Tµν ]]nµ = 0 ,

where nµ is the unit vector normal to the surface of discontinuity. The
symbol [[·]] is used to denote the difference between the limits of a given
function at both sides of the discontinuity. As we are primarily interested
in establishing the state behind the shock wave basing on the known state
in front of it, we assume a notation in which the value of a given quantity in
front of the shock wave is denoted with a dash, while an unaltered symbol
is reserved for the value behind the discontinuity. In this notation a jump
of a given quantity f is denoted as [[f ]] = f − f̄ (a similar convention was
adopted in [11]).

For the discontinuity surface being a plane perpendicular to the x axis,
the components of the normal vector nµ can be written as nµ=Ws(Vs, 1, 0, 0),
where Ws = 1/

√
1− V 2

s . Here Vs has an interpretation of the shock wave
velocity.

The Rankine–Hugoniot conditions can be now written as[[
ρW 2−κρ]]Vs =

[[
ρW 2vx

]]
,[[

ρW 2vx
]]
Vs =

[[
ρW 2(vx)2 + κρ

]]
,[[

ρW 2vy
]]
Vs =

[[
ρW 2vxvy

]]
,[[

ρW 2vz
]]
Vs =

[[
ρW 2vxvz

]]
. (8)

For vx = vy = 0 the only physical solution to the above algebraic set of
equations is given by

ρ = ρ̄
(

1 +Θ +
√

(1 +Θ)2 − 1
)
,



Analytic Solutions of the Riemann Problem in Relativistic . . . 581

where Θ = W 2W̄ 2(vx − v̄x)2/(2κ(1 − κ)). The shock wave velocity Vs can
be expressed as

Vs =

[[
ρW 2vx

]]
[[ρW 2 − κρ]]

.

For non-zero tangential velocities vt the speed of propagation of the shock
wave can be obtained as the root of the following cubic equation

(1− v̄ xVs)
[
(1− vxVs)(1− v̄ xVs)− 1

k
(vx − Vs)(v̄ x − Vs)

]
− (v̄ t)2(1− vxVs)(1− V 2

s ) = 0 .

The value of Vs can always be computed with the help of Cardano’s formulae,
but a Newton–Raphson scheme may be more efficient in numerical applica-
tions. The above equation was derived from (8) under the assumption that
Vs 6= vx. The case with Vs = vx, corresponds to a contact discontinuity.

Having obtained a solution for Vs we can express the value of the energy
density behind the shock wave as

ρ =
ρ̄W̄ 2(v̄ x − Vs)

[
(1− (vx)2)(1− v̄xVs)2 − (v̄ t)2(1− vxVs)2

]
(vx − Vs)(1− vxVs)(1− v̄ xVs)

. (9)

The solution is completed by the expression for the tangential velocity

(
vt
)2 =

(Vs − v̄ x)2ρ̄2W̄ 4(v̄ t)2

ρ2W 4(Vs − vx)2
.

3.3. Contact discontinuity

Apart form the shock waves described above, equations (8) admit non-
trivial solutions for which Vs = vx, that is, the discontinuity is moving with
the flow of the fluid. In this case we have v̄x = vx(= Vs) and ρ̄ = ρ. There
is, however, no constraint on the tangential velocity, and it can exhibit an
arbitrary jump. Such a discontinuity is called a contact one.

We should also note that in this respect the hydrodynamics with the
ultra-relativistic equation of state differs qualitatively from that of the per-
fect gas equation of state. In the latter case a contact discontinuity can also
be present due to the jump in the rest mass density and the specific internal
energy.

3.4. Solutions of the Riemann problem

Whether we are dealing with the rarefaction or a shock wave can be
distinguished basing on the ratio of the pressure p̄ in front of the wave to
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the pressure p behind the wave. For p̄ > p we have a rarefaction wave, while
the condition p̄ < p is characteristic for a shock wave [12]. It follows from
the results presented in the preceding sections, that this distinction can be
translated into a condition concerning the velocity vx.

Let ρ = S→(←)(vx) be the energy density behind the shock wave under-
stood as a function of the post-shock velocity vx and given by equation (9)
(here again the arrows refer to the direction from which the fluid enters the
wave). Let us also introduce a similar function for the rarefaction wave and
denote it by ρ = R→(←)(vx). The expressions for the energy density behind
an arbitrary wave W→(←) can be now written as

ρ =W→(vx) =
{ R→(vx) , vx < v̄x ,
S→(vx) , vx ≥ v̄x ,

for a right moving wave, and

ρ =W←(vx) =
{ S←(vx) , vx < v̄x ,
R←(vx) , vx ≥ v̄x ,

for a left moving one. The symbol v̄x used here denotes the normal velocity
in front of a wave. In order to show the influence of the tangential velocities
on the solution, we depicted several of such functions on Fig. 1, plotting the
graphs for different values of v̄ t for both right and left-moving waves.

The strategy of finding the solution of the Riemann problem can be now
described as follows. We consider a function ρ =W←(vx) for the state L and
ρ = W→(vx) for the state R, where the states L and R represent the data
in front of the waves. The intersection of the graphs of those functions gives
the values of vx∗ and ρ∗, common for both intermediate states L∗ and R∗, and
also identifies the character of both waves (the so-called wave pattern). To
complete the solution one only need to establish the velocities with which
the fronts of the waves, and the tail of the rarefaction wave (if present)
propagate. The shock wave moves with the velocity Vs, which can be easily
computed once the value of vx∗ has been obtained. The velocity of the head of
the rarefaction wave is given by ξ± (plus for R→, minus for R←) calculated
for the suitable Riemann state. The location of the tail of the rarefaction
wave can be computed from the condition that the energy density in the
wave should reach the value of ρ∗.

A sample solution obtained in this way is shown on Figs. 2 and 3. As the
initial states for this example we chose ρL = 1, vxL = 1/2, vt

L = 1/3 for the
left state and ρR = 20, vxR = 1/2, vt

R = 1/2 for the right one. The equation
of state was assumed to be p = ρ/3.
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v̄t = 0.865,W←
v̄t = 0.8,W←
v̄t = 0.5,W←

v̄t = 0,W←
v̄t = 0.865,W→

v̄t = 0.8,W→
v̄t = 0.5,W→

v̄t = 0,W→

vx
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0

Fig. 1. The dependence of the energy density ρ on the velocity vx behind the wave
for the ultra-relativistic equation of state with k = 1/3. Different curves refer to
values of the tangential velocity v̄t in front of the wave equal to 0, 0.5, 0.8, and
0.865. The velocity v̄x in front of the wave is equal 0.5, and the density ρ̄ was
set to 1. Increasing curves correspond to the right moving waves, while decreasing
ones to the left moving waves.
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Fig. 2. The solution of the Riemann problem for t = 1. The left initial state is
given by ρL = 1, vx

L = 1/2, vt
L = 1/3 and the right state by ρR = 20, vx

R = 1/2,
vt

R = 1/2.
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Fig. 3. Time snapshot of the solution of the Riemann problem with the same initial
data as on Fig. 2. The solid line corresponds to the velocity vt, while the dotted
one depicts vx.

4. Description of the numerical code

We will now describe a numerical code that has been implemented in
order solve equations (3) in (3 + 1) dimensions.

The construction of the code is similar to the one described in [13]. The
vector of conserved quantities U given by (4) is discretized on a Cartesian
grid of cells and its time derivative is computed according to the following
method of lines

dU i,j,k

dt
= − 1

∆x

(
F̂
x
i+1/2,j,k − F̂

x
i−1/2,j,k

)
− 1

∆y

(
F̂
y
i,j+1/2,k − F̂

y
i,j−1/2,k

)
− 1

∆z

(
F̂
z
i,j,k+1/2 − F̂

z
i,j,k−1/2

)
.

Here indices i, j, k number the cells of the grid in the directions x, y and z,
while F̂

x
i±1/2,j,k, F̂

y
i,j±1/2,k and F̂

z
i,j,k±1/2 are numerical fluxes at cells’ in-

terfaces. With this discretization the values of U i,j,k are evolved with the
standard Runge–Kutta method of the second order. The time step for this
evolution is limited by the Courant criterion, in which it is convenient to
assume the speed of light c = 1 as the upper bound for the velocity of any
signals.

The numerical fluxes are computed following a method developed by
Harten, Lax and van Leer [14] (HLL method, hereafter) and proposed for
the relativistic hydrodynamics by Schneider et al. [15]. A flux between two
cells characterized by the states UL and UR is given by:
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F̂ =
cmaxF (UL) + cminF (UR)− cmaxcmin (UR −UL)

cmax + cmin
,

where cmax = max{0, λL,R0 , λL,R± } and cmin = −min{0, λL,R0 , λL,R± }. Here
λL,R0 and λL,R± denote the eigenvalues of the Jacobians ∂F i/∂U as given by
the formula (7) and computed for the states UL and UR, respectively.

The so-called minmod reconstruction method of Van Leer [16] was used
to improve the spatial accuracy of the scheme. In this approach the states
UL,R used to compute numerical fluxes are obtained as follows. We first
define the “minmod” function

minmod(a, b) =

 a if |a| < |b| , ab > 0 ,
b if |a| > |b| , ab > 0 ,
0 if ab ≤ 0

and the slope limiters

Si = minmod
(

U i+1 −U i

xi+1 − xi ,
U i −U i−1

xi − xi−1

)
.

Then the expressions for left and right states used to compute the numerical
flux at the interface i+ 1/2 are given by

UL
i+1/2 = U i + Si

(
xi+1/2 − xi

)
,

UR
i+1/2 = U i+1 + Si+1

(
xi+1/2 − xi+1

)
.

The above formulae actually refer to the reconstruction procedure in x di-
rection. Formulae for other directions are analogous.

The recovery of primitive variables, i.e., obtaining the values of p, ρ,
vx, vy and vz from U is straightforward, and, unlike in simulations with
the perfect gas equation of state, it does not involve a numerical solution
to a nonlinear algebraic equation. In the latter case this is usually obtained
using an iterative Newton–Raphson scheme. This fact results in a robust
performance of the code for the ultra-relativistic equation of state, as com-
pared to the standard case. We omit the exact formulae for the recovery of
the primitive quantities, as they follow directly from (4).

Boundary conditions are implemented by adding to the numerical do-
main 2 “ghost” zones in each direction, following the standard procedure
used in numerical hydrodynamics (see e.g. [17]). The method of “ghost”
zones is also used to split the grid into parts in the parallel Message Passing
Interface (MPI) implementation of the code. In this case the values of the
“ghost” zone variables are obtained from adjacent parts of the grid.
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5. Sample code tests

We used the exact solution presented on Figs. 2 and 3 to test the code. To
this end we performed a couple of 2 dimensional runs, so that the tangential
velocity was also evolved, reaching the time t = 1. We used equidistant
grids of 100, 200, 400, 800 and 1600 zones per unit length. In each case
the Courant factor was set to 0.1. Results of a run with the resolution of
800 zones per unit length are shown on Figs. 4 and 5. The data depicted

numerical solution
exact solution
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0

Fig. 4. Sample numerical solution for the energy density (points) plotted over the
exact solution from Fig. 2 (solid line). The numerical solution was obtained with
the spatial resolution of 800 zones per unit length.
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Fig. 5. Sample numerical solutions for the velocities vx and vt (points) plotted
over the exact curves from Fig. 3. The numerical solutions were obtained with the
spatial resolution of 800 zones per unit length.
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on these graphs come from one y = const. slice of the grid. We see that
the resolution of discontinuities is worse for the tangential velocities, most
probably due to non-negligible numerical viscosity of the scheme.

Table I gives the estimates of the absolute numerical errors computed
with respect to the L1 norm on the interval x ∈ [−1, 1]. The exact solution
was taken as the reference for the calculation of these errors. The linear
convergence in all variables is characteristic for test problem involving strong
discontinuities.

TABLE I

Estimates of absolute errors of sample numerical runs for the Riemann problem
illustrated on Figs. 2 and 3. The errors were computed in the L1 norm on the
interval x ∈ [−1, 1] with respect to the exact solution.

Zones/unit length ρ vx vy

100 3.1× 10−1 1.6× 10−2 1.8× 10−2

200 1.7× 10−1 9.1× 10−3 1.0× 10−2

400 9.2× 10−2 6.2× 10−3 6.6× 10−3

800 4.7× 10−2 2.8× 10−3 4.1× 10−3

1600 2.5× 10−2 1.7× 10−3 2.5× 10−3

We should also point out that the HLL Riemann solver implemented
in the scheme is an approximate one and it does not exploit the analytical
solution presented in this chapter. Thus the presented test and the imple-
mentation of the code are independent — we are not testing a given solution
against itself.

6. Summary

We have presented the exact solution of the Riemann problem in the
relativistic hydrodynamics with the ultra-relativistic equation of state, in
which the fluid is allowed to move with arbitrary velocities, also tangent to
the surface of the initial discontinuity. We have also described a 3 dimen-
sional numerical scheme for solving relativistic equations of hydrodynamics
with the ultra-relativistic equation of state. Tests of the implemented code
against the obtained analytic solution show satisfactory convergence and
accuracy allowing to hope for future applications of the code.

We are also convinced that the analytic solution discussed in this article
can be used to construct an exact Riemann solver for the 3 dimensional
hydrodynamic codes with the ultra-relativistic equation of state.

We also believe that this solution can find its applications outside strictly
numerical hydrodynamics. It was already mentioned in the beginning that
a similar solution for the perfect gas equation of state can be used to
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explain a boosting mechanism present in relativistic jets [10]. The required
“boosting” property is also exhibited by solutions of this paper. This fact
can be noticed, for instance, by looking at the solution from Fig. 3, where
the tangential velocity in the rarefaction wave reaches values much greater
than any of velocities present in the initial states.
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