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We explain how the Calabi problem on a smooth projective complex
manifold can be discussed from the point of view of quantum formalism. We
derive from this approach a natural flow on the space of Kähler potentials
that has an interpretation in terms of moments maps. Finally, we discuss
briefly how such techniques could be adapted to the study of the J-flow.
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1. Introduction

In this paper, we are interested in the Calabi problem from the per-
spective of the quantum formalism. Let us recall that the Calabi problem
consists in finding, given a Kähler class [α] and a volume form Ω with ex-
pected total volume (i.e.

∫
Ω = Vol(α)), a smooth Kähler metric ω in the

class [α] which represents this volume form Ω. This means that the Kähler
metric ω is a solution to the complex Monge–Ampère equation

ωn

n!
= Ω .

It is well known that the existence of a solution to this equation is proved
by a famous result of Yau [1] using a continuity method argument. Later, a
result of Cao [2] gave another proof using Ricci flow. We refer to [3, 4, 5] as
surveys on the proofs of this result. There are still some work in progress
in that area, especially when one is considering non-smooth volume forms
or non-smooth underlying manifold, motivated by some natural questions
related to the minimal model program for complex algebraic manifolds (see
the recent progress in [6, 7, 8] for instance).
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We will describe in this paper another flow method to solve the Cal-
abi problem. Details of the proofs will appear in another paper [9] which
contains also some extended results. This flow, called the Ω-Kähler flow is
natural and comes from the quantum formalism and a natural moment map
construction.

We describe now the structure of this paper. In the first section, we give
a brief survey of the relationship between Bergman spaces and the space of
Kähler potentials via the quantization process. Then we recall some results
about balanced metrics mainly due to S.K. Donaldson and we introduce the
balancing flow via a moment map approach. We explain the main steps to
prove that at the quantum limit, the balancing flow converges towards the
Ω-Kähler flow and we discuss the behaviour of this latter flow. Finally, we
will address some open questions in the last section.

2. Quantum formalism and the space of Kähler potentials

A classical physical system can be mathematically described as a sym-
plectic manifold M equipped with a symplectic form ω. In that case, an
observable on the state space (M,ω) is just a real-valued function on M.
From this point of view, quantization consists, on one hand, in associating a
Hilbert space H(M,ω) to (M,ω), and on another hand, in associating Her-
mitian operators on H(M,ω) to real-valued function on M. Moreover, the
quantizations should come in families parametrized by a small parameter ~
(the “Planck’s constant”) and in the limit ~→ 0 the classical setting should
emerge from the quantum one, in a suitable sense. See for example [10, 11]
for a general survey on quantization.

As shown by F. Berezin, M. Cahen, S. Gutt, J. Rawnsley and others,
any positively curved metric hL on a line bundle L → M induces a Kähler
quantization with ~ = 1/k, where k is a positive integer. If we set ω = c1(hL)
the curvature of hL which is a smooth Kähler form, the quantization (at
level k) of (M,ω) is obtained by considering the finite dimensional complex
vector space

H(M,ω) := H0
(
M,L⊗k

)
= H0

(
M,Lk

)
of holomorphic sections of Lk = L⊗k, that can be equipped with the Hermi-
tian metric Hilb(hkL)

Hilbk(hL)(s, s̄) =
∫
M

|s|2
hk

L

ωn

n!
.

Note that other choices of volume forms in the previous definitions are pos-
sible at that stage. To any observable f ∈ C∞(M,R), one can associate the
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hermitian Toeplitz operator T (k)
f on H0(M,L⊗k) with symbol f . It can be

defined by
T

(k)
f (u) = Pk(f · u) ,

where Pk : C∞(M,L⊗k)→ H0(M,L⊗k) is the orthogonal projection induced
by the Hilbert space structure.

Most of the proofs of the results of this theory reduce to understand
when k → +∞ the asymptotic properties of the Bergman kernel Kk(x, y),
the integral kernel of the orthogonal projection Pk. These asymptotics can
be obtained using the micro-local analysis of Boutet de Monvel–Sjöstrand
[12, 13, 14] but other approaches do exist. The asymptotic expansion of the
pointwise norm ρ(hL)(x) = Kk(x, x) given by restricting the kernel to the
diagonal (also called the “distortion function” or “Bergman function”) is given
by

ρ(hL)(x) = kn
(
1 + k−1b1(x) + k−2b2(x) + . . .

)
(1)

which holds in the C∞-topology and where the coefficients bi depend polyno-
mially on hL and its covariant derivatives. Note that one can write explicitly
ρ(hL) using an orthonormal basis (Si) = (Si)i=1,...,dimH0(Lk) of H0(M,L⊗k)
with respect to the L2 inner product induced by hkL and ωn, as the smooth
function

ρL(x) =
dimH0(Lk)∑

i=1

|Si|hk
L
(x)

(compare with Sec. 3). This asymptotics result and its generalizations have a
lots of consequences and we shall quote some of them briefly. For instance, if
Sp(T (k)

f ) denotes the spectrum of the Toeplitz operator T (k)
f defined above,

then, coming back to the work of Boutet de Monvel, Guillemin [12], one
obtains at k → +∞

1
kn

∑
λ
(k)
i ∈Sp(T

(k)
f )

δ
λ
(k)
i

→ f∗(ω)n

n!
. (2)

In particular, if we set f = 1 and integrate over R, then appears the first
terms of the asymptotic Riemann–Roch formula

Nk := dimH0
(
M,Lk

)
− 1 = kn

∫
M

ωnφ
n!

+O
(
kn−1

)
(3)

which identifies the leading asymptotics of the dimension of the quantum
state space with the volume of the classical phase space.
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Another consequence is a nice result of Tian [15] (see also [16] for a
heat kernel approach) which shows that the Kähler metric ω in the Kähler
class 2πc1(L) can be approximated (actually in smooth topology, see [17])
by the pull-back of the Fubini–Study metrics induced by the Kodaira em-
beddings of M ↪→ PH0(M,Lk)∨ defined by the Hilbk(hL)-orthonormal sec-
tions. In other words, if one considers the Bergman space Bk of hermitian
operators on H0(M,Lk) that can be identified with the symmetric space
GL(Nk+1,C)/U(Nk+1), then for any element of Bk corresponds a Bergman
metric in 2πc1(L) by pull-backing the Fubini–Study metric. If one denotes
FS(Bk) the space of Bergman metrics (see Sec. 3 for definitions), then Tian’s
result asserts that the space of Kähler potential in 2πc1(L) is the C∞ clo-
sure of the union of FS(Bk), k � 0. This suggests that the space of Kähler
potential and the Bergman spaces should enjoy similar geometric properties.
This is actually the case, and different results in that directions have been
proved. For instance, the geodesics of the space of Kähler potentials can
be approximated uniformly by the geodesics in the Bergman space [18, 19].
The underlying motivation behind these results is explained Donaldson’s
work [20]. Roughly speaking, one expects to prove uniqueness, up to au-
tomorphisms, of constant scalar curvature Kähler metrics in 2πc1(L), by
connecting any given two such metrics by a geodesic segment and by consid-
ering the Mabuchi K-energy. Moreover, the geodesic distance on the space
of Kähler potentials can also be approximated by the geodesic distance on
Bk (see [21, 22]). This frame of ideas lead J. Fine to study the Calabi flow
via the quantum formalism [23], in order to obtain new regularity results.
His paper motivated the study of the Calabi problem that we shall present
now.

3. The Ω-balanced metrics and the Ω-balancing flow

In this section, we give some definitions and a short survey about
Ω-balanced metrics.

Assume that M is a smooth polarized manifold of complex dimension
n and L an ample line bundle. We consider Ω a smooth volume form on
M such that

∫
M Ω = VolL(M) := (2π)n

n! c1(L)n, the volume of M with re-
spect to L.

In [24], Donaldson introduced a notion of Ω-balanced metric, adapted to
the Calabi problem mentioned previously. His construction is natural from
the Geometric Invariant Theory perspective. These Ω-balanced metrics are
algebraic metrics coming from the embedding of the manifold in PH0(Lk)∨

for k sufficiently large. Let us be more precise. Given a (smooth) hermitian
metric h ∈ Met(Lk), one can consider the Hilbertian map associated to a
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fixed smooth volume form Ω,

HilbΩ = Hilbk,Ω : Met
(
Lk
)
→ Met

(
H0
(
Lk
))

,

such that
HilbΩ(h) =

∫
M

h(., .)Ω

is the L2 metric induced by the fibrewise h. On another hand, one can
consider the Fubini–Study applications

FS = FSk : Met
(
H0
(
Lk
))
→ Met

(
Lk
)

such that for H ∈ Met(H0(Lk)), Si an H-orthonormal basis of H0(Lk) and
for all p ∈M ,

dimH0(Lk)∑
i=1

|Si(p)|2FS(H) =
dimH0

(
Lk
)

VolL(M)
,

thus fixing pointwise the metric FS(H) ∈ Met(Lk). One of the main result
of [24] asserts that the dynamical system

Tk = FS ◦HilbΩ

has a unique attractive fixed point.

Definition 3.1 Let (M,L) be a polarized manifold, Ω a smooth volume
form. Then for any sufficiently large k, there exists a unique fixed point
hk of the map Tk : Met(Lk) → Met(Lk) which is called Ω-balanced. The
metric HilbΩ(hk) ∈ Met(H0(Lk)) and the Kähler form c1(hk) ∈ 2πc1(L),
given by the curvature of hk, will also be called Ω-balanced.

When k tends to infinity, one obtains from [24] and [25, Theorem 3], the
following result.

Theorem 3.2 When k → ∞, the sequence of normalized Ω-balanced met-
rics (hk)1/k ∈ Met(L) converges to a hermitian metric h∞ in smooth topol-
ogy and its curvature is a solution to the Calabi problem of prescribing the
volume in a given Kähler class,

(c1(h∞))n/n! = Ω .

In particular, this theorem provides a way to construct numerical approxi-
mations of Calabi–Yau metrics [24].
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Let us denote as before N + 1 = Nk + 1 = dimH0(Lk). Another way of
presenting the notion of Ω-balanced metric is to introduce a moment map
description. Firstly, let us consider

µ : CPN → iu(N + 1) (4)

the classical moment map for the U(N +1) action. Then, given an holomor-
phic embedding ι : M ↪→ PH0(Lk)∨, we can consider the integral of µ over
M with respect to the volume form

µΩ(ι) =
∫
M

µ(ι(p))Ω(p)

which provides a moment map for the U(N + 1) action over the space of
all bases of H0(Lk). Actually, there is a Kähler structure on that space
isomorphic to GL(N +1), and U(N +1) acts isometrically with the moment
map given by

ι 7→ −
√
−1
(
µΩ(ι)− tr(µΩ(ι))

N + 1
IdN+1

)
.

Note that if one defines a hermitian metric H on H0(Lk), one can consider
an orthonormal basis with respect toH and thus it also makes sense to speak
of µΩ(H). As we shall see, in the Bergman space Bk, we have a preferred
metric associated to the volume form Ω and the moment map we have just
defined, and this is precisely an Ω-balanced metric.

We say that the embedding ι is Ω-balanced if and only if

µ0
Ω(ι) := µΩ(ι)− tr(µΩ(ι))

N + 1
IdN+1 = 0 .

An Ω-balanced embedding corresponds (up to SU(N + 1)-isomorphisms)
to an Ω-balanced metric ι∗ωFS by pull-back of the Fubini–Study metric
from PH0(Lk) = PN , so our two definitions actually coincide. Note that
for H ∈ Met(H0(Lk)), it also makes sense to consider µΩ(h), where h =
FS(H) ∈ Met(Lk), i.e. when h belongs to the space of Bergman type
fibrewise metric that we identify with Bk.

On another hand, seen as a hermitian matrix, µ0
Ω(ι) induces a vector

field on CPN . Thus, inspired from [23], we study the following flow

dι(t)
dt

= −µ0
Ω(ι(t)) (5)

and we call this flow the Ω-balancing flow. To fix the starting point of this
flow, we choose a Kähler metric ω = ω(0) and we construct a sequence of
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hermitian metrics hk(0) such that ωk(0) := c1(hk(0)) converges smoothly to
ω(0) providing a sequence of embeddings ιk(0) for k � 0. Such a sequence of
embeddings is known to exist thanks to Tian–Bouche’s theorem mentionned
in Sec. 2. For technical reasons coming from the asymptotics expansion, we
need to rescale this flow by considering the following ODE

dιk(t)
dt

= −kµ0
Ω(ιk(t)) (6)

that we call the rescaled Ω-balancing flow. Of course, we are interested in
the behavior of the sequence of Kähler metrics ωk(t) = 1

k ιk(t)
∗ (ωFS) when

t and k tends to infinity. In the paper, we give a brief overview of the
techniques used to prove the following result.

Theorem 3.3 For any fixed t, the sequence ωk(t) converges in C∞ topology
to the solution ω +

√
−1∂∂̄φt of the following Monge–Ampère equation

∂φt
∂t

= 1− Ω

(ω +
√
−1∂∂̄φt)n/n!

(7)

with φ0 = 0 and ω = limk→∞ ωk(0). Furthermore, the convergence is C1 in
the variable t.

We call the flow given by Eq. (7), the Ω-Kähler flow.
Firstly, we shall identify the limit of a convergent sequence of rescaled

Ω-balancing flows (Sec. 4), that we shall call the Ω-Kähler flow. Then we
explain the behavior of the Ω-Kähler flow in any Kähler class (see Sec. 5).
Finally, inspired from the work of [26] and especially [23] for the Calabi flow,
we explain the main steps to obtain Theorem 3.3 in Sec. 6. Later, we draw
some possible generalizations of this work.

4. Study of the limit of the rescaled Ω-balancing flow

In this section, we assume that the sequence ωk(t) is convergent and we
want to relate its limit to Eq. (7).

Given a matrix H in Met(H0(Lk)), we obtain a vector field XH which
induces a perturbation of any embedding ι : M ↪→ PH0(Lk)∨. The induced
infinitesimal change in ι∗ωFS is pointwisely given by the potential tr(Hµ),
where µ is given by (4). Thus, the corresponding potential in the case of
the rescaled Ω-balancing flow is −ktr(µ0

Ωµ). Since we are rescaling the flow
in (6) and considering forms in the class 2πc1(L), we are lead to understand
the asymptotic behavior when k →∞ of the potentials

βk = −tr
(
µ0
Ωµ
)
. (8)
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We need an asymptotics expansion at that stage. The following technical
result can be proved with similar arguments to Tians and Bouche’s theo-
rem [16, 15] and we refer to [27, Theorem 4.1.1 (with notation 1.4.18)]) or
[28, Theorem 4.1] for a detailed proof.

Proposition 4.1 Let (M,L) be a projective polarized manifold, h ∈ Met(L)
such that its curvature c1(h) = ω > 0 is a Kähler form. Assume that Ω is a
volume form then we have the following asymptotic expansion for k →∞

N+1∑
i=1

|Si|2hk = kn
ωn

Ω
+O

(
kn−1

)
, (9)

where (Si) ∈ H0(M,Lk) is an orthonormal basis with respect to HilbΩ(hk).

We have the following consequence.

Proposition 4.2 Let hk ∈ Met(Lk) be a sequence of metrics such that
ωk := 1

kc1(hk) is convergent in smooth topology to the Kähler form ω. Then
the potentials βk = −tr(µ0

Ωµ) converge in smooth topology to the potential

1− Ω

ωn
.

Proof. Let us give a sketch of the proof. By the discussion at the beginning
of Sec. 4, we can write the balancing potential βk(Hk) at p ∈M . Now, the
main ingredient of the proof is given by [23, Theorem 26] and [29]. Actually,
we understand the asymptotic behavior of the quantification operator

Qk(f)(p) =
1
kn

∫
M

∑
a,b

〈Sa, Sb〉(q)〈Sa, Sb〉(p)f(q)ωnk (q) , (10)

where (Si) is an orthonormal basis. Precisely, it is known by a result of
K. Liu and X. Ma that ‖Qk(f) − f‖Cm ≤ C

k ‖f‖Cm for an independent
constant C > 0. Then, for k →∞, one obtains

βk(Hk)(p) = 1− Ω

ωnk
Qk

(
1 +O

(
1
k

))
.

The convergence of Qk(1+O( 1
k )) to 1+O(1/k) is proved in [23, pp. 10–11].

Remark that the previous computation shows that we need to consider the
rescaled balancing flow instead of the flow defined by (5).

Here is the main result of this section which identifies the limit of the
sequence of rescaled Ω-balancing flows for k → +∞. It is a simple conse-
quence of Proposition 4.2 and a 1-parameter version of Bouche and Tian’s
result [16,15].



About Kähler Quantization and the Calabi Problem 333

Theorem 4.3 Suppose that for each t ∈ R+, the metric ωk(t) induced by
Eq. (6) converges in smooth topology to a metric ωt and, moreover, that this
convergence is C1 in t ∈ R+. Then the limit ωt is a solution to the flow (7)
starting at ω0 = limk→∞ ωk(0).

5. Study of the Ω-Kähler flow

5.1. Existence

We are now interested in the flow

∂φt
∂t

= 1− Ω(
ω +
√
−1∂∂̄φt

)n
/n!

(11)

over a compact Kähler manifold (not necessarily in an integral Kähler class),
where φ0 = 0 and ω is a Kähler form in a fixed class [α]. Of course, this can
be rewritten as (

ω +
√
−1∂∂̄φt

)n
=

1

1− ∂φt

∂t

efωn (12)

where f is a smooth (bounded) function defined by f = log(Ω/ωn). Long
time existence and convergence of this flow can be studied following the ideas
of [2]. Note that we have been informed that similar results were proved re-
cently in [30] after we wrote this article and we want to thank Prof. Z. Blocki
for this reference. The main tool to obtain a priori estimates is the max-
imum principle, Nash–Moser’s iterations techniques (for the C0 estimate)
and Schauder regularity theory. Finally, we obtain existence for all time.
To prove the convergence of the Ω-Kähler flow, one can use some results
of Li and Yau for the positive solution of the heat equation on Riemannian
compact manifolds [31, Sec. 2] which are still valid in that context. Then,
we derive

Theorem 5.1 Let us denote vt = φt− 1
VolL(M)

∫
M

φt
ωn

n! , where φt is solution

to Eq. (12), the Ω-Kähler flow. Then, vt converges when t → ∞ to v∞ in
smooth topology and ∂φt

∂t converges to a constant in smooth topology.

A direct consequence of Theorem 5.1 is the convergence of the Ω-Kähler
flow to the solution of the Calabi conjecture. Actually, the limit v∞ satisfies(

ω +
√
−1∂∂̄v∞

)n
/n! =

(
ω +
√
−1∂∂̄φ∞

)n
/n! = Ω .
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6. Proof of Theorem 3.3

6.1. First order approximation

We know that from any starting point ω = ω0, there exists a solution
ωt = ω +

√
−1∂∂̄φt to the Ω-Kähler flow from the results of Sec. 5. We can

write ωt = c1(ht), where ht is a sequence of hermitian metrics on the line
bundle L. Furthermore, we can construct a natural sequence of Bergman
metrics ĥk(t) = FS(HilbΩ(hkt ))

1/k by pulling back the Fubini–Study metric
using sections which are L2-orthonormal with respect to the inner product

1
kn

∫
M

ht(., .)kΩ .

Using Proposition 4.1 we obtain the asymptotic behavior for k � 0, ĥk(t) =(
knc1(ht)n/n!

Ω +O
(

1
k

))1/k
ht. Thus, the sequence ĥk(t) is convergent when k

tends to infinity to ht.
On another hand, the rescaled Ω-balancing flow provides a sequence of

metrics ωk(t) = c1(hk(t)) solution to (6). Note that by construction, we fix
hk(0) = ĥk(0) for the starting point of the rescaled Ω-balancing flow.

We wish to evaluate the distance between the two metrics hk(t) and
ĥk(t). Since we are dealing with algebraic metrics, we have the (rescaled)
metric on Hermitian matrices given by

dk(H0, H1) =
(

tr (H0 −H1)2

k2

)1/2

on Met(H0(Lk)) which induces a metric on Met(L), that we denote distk.
Using arguments similar to [23, Proposition 10] together with convergence
of the balancing flow to the Ω-balanced metric [24], we derive

Proposition 6.1 One has distk(hk(t), ĥk(t)) ≤ C
k , with C > 0 independent

of k.

6.2. Higher order approximation

One can improve the result of the last section by constructing a new
time-dependent function ψ(k, t) = φt +

∑m
j=1

1
kj ηj(t) which is obtained by

deforming the solution to the Ω-Kähler flow and which satisfies the property
to be “as close” as we wish to the Ω-balancing flow. We will need to compare
this metric to the Bergman metric hk(t). Thus, we introduce the Bergman
metric associated to h0e

ψ(k,t), i.e.

hk(t) = FS
(

HilbΩ
(
hk0e

kψ(k,t)
))1/k

.
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We wish to minimize the quantity distk(hk(t), hk(t)) by showing an estimate
of the form distk(hk(t), hk(t)) < C/km+1, with C > 0 a constant indepen-
dent of k � 0 and t. This is the parameter version of [26, Theorem 26],
and Proposition 6.1 shows that the result holds for m = 0. One needs
to choose inductively the functions ηj and this is done by linearizing the
Monge–Ampère operator. The key ingredient is that we are able to invert
the second order operator

Ω

ωnt
∆t −

∂

∂t
.

Theorem 6.2 Given φt solution to the Ω-Kähler flow (7) and k � 0, there
exist functions η1, . . . , ηm, for m ≥ 1, such that the deformation of φt given
by the potential ψ(k, t) = φt +

∑m
j=1

1
kj ηj(t) satisfies

distk
(
hk(t), hk(t)

)
≤ C

km+1

for C > 0 is independent of (k, t).

6.3. L2 estimates in finite dimensional set-up

We start this section by fixing some notations and giving some defini-
tions. Let us fix a reference metric ω0 ∈ 2πc1(L) and denote ω̃0 = kω0

the induced metric in 2πkc1(L). We need the notion of R-bounded ge-
ometry in Cr [26, Sec. 3.2]. The purpose to work with R-bounded met-
rics is to avoid constants depending on k in the estimates. We say that
a metric ω̃ ∈ 2πkc1(L) has R-bounded geometry in Cr if ω̃ > 1

R ω̃0 and
‖ω̃ − ω̃0‖Cr(ω̃0) < R. We say that a basis (Si) of H0(M,Lk) is R-bounded
if the Fubini–Study metric induced by the embedding of M in PH0(Lk)∨

induced by the (Si) has R-bounded geometry. Let us fix

HA =
∑
i,j

Aij(Si, Sj) = tr(Aµ) ∈ C∞(M) ,

where A = (Aij) is a Hermitian matrix, (Si) is a basis of H0(Lk) and (., .)
denotes the fibrewise Fubini–Study inner-product induced by the basis (Si).
This function corresponds to the potential obtained by an A-deformation of
the Fubini–Study metric, i.e. when one is moving the Fubini–Study metric
in an Lie(SU(N+1)) orbit. Moreover, we denote ‖A‖op = max |Aζ||ζ| the oper-
ator norm, given by the maximum moduli of the eigenvalues of the hermitian
matrix A, and the Hilbert–Schmidt norm ‖A‖2 = tr(A2) = tr(AA∗) ≥ 0.
The following result is very general.
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Proposition 6.3 ([26, Lemma 24], [23, Proposition 12]) There exists
C > 0 independent of k, such that for any basis (Si) of H0(Lk) with
R-bounded geometry in Cr and any hermitian matrix A,

‖HA‖Cr ≤ C‖µΩ(ι)‖op‖A‖ ,

where ι is the embedding induced by (Si).

A consequence is the following corollary.

Corollary 6.4 Let us fix r ≥ 2. Assume that for all t ∈ [0, T ], the family
of basis {(Si)i=1,..,Nk+1}(t) of H0(Lk) have R-bounded geometry. Let us
define by h(t) the family of Bergman metrics induced by {(Si)}(t). Then,
the induced family of Fubini–Study metrics ω̃(t) satisfy

‖ω̃(0)− ω̃(T )‖Cr−2 < C sup
t
‖µΩ(ι(t))‖op

T∫
0

dist(h(s), h(0))ds ,

where C is a uniform constant in k.

6.4. Projective estimates

This is the technical part of the proof and we will refer to [9] for the
details. In this section, we aim to control the operator norm of the moment
map in terms of the Riemannian distance in the Bergman space Bk. The
projectives estimates consists essentially in giving an upper bound of ‖HA‖L2

from which we derive the following result.

Proposition 6.5 Let b0, b1 ∈ Bk. Then,

‖µΩ(b1)‖op ≤ e2distk(b0,b1)‖µΩ(b0)‖op .

6.5. End of the proof

Using the results of the previous sections, we are now ready to give a
sketch of the proof of Theorem 3.3, that is to show the smooth convergence
of Kähler metrics ωk(t) involved in the rescaled balancing flow (6) towards
the solution ωt to the Ω-Kähler flow. Using Theorem 6.2, for any m > 0, we
have obtained a sequence of Kähler metrics ω(k; t) = c1(h0e

ψ(k,t)) such that
ω(k; t) converges, when k → +∞ and in smooth sense, towards the solution
to the Ω-Kähler flow ωt = c1(h0e

φt). Moreover, one has for k large enough
and with hk(t) ∈ Bk the Bergman metric associated to h0e

ψ(k,t) ∈ Met(L),
the estimate

distk(hk(t), hk(t)) ≤
C

km+1
, (13)
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where hk(t) is the metric induced by the rescaled Ω-balancing flow. Conse-
quently, to get the C0 convergence in t, all what we need to show is that∥∥ωk(t)− c1 (hk(t))∥∥Cr(ωt)

→ 0 . (14)

The idea is to consider the geodesic in the Bergman space between these
two points. Firstly, we will get that along the geodesic from hk(t) to hk(t)
in Bk, ‖µΩ‖op is controlled uniformly if we can apply Proposition 6.5. This
requires to prove that hk(t) is at a uniformly bounded distance of hk(t)
and that ‖µΩ(hk(t))‖op is bounded in k. But, this comes essentially from
inequality (13) and the fact that one can choose precisely m ≥ n+ 1.

Secondly, one needs to show that the points along this geodesic have
R-bounded geometry. This can be proved by updating [23, Lemma 9].

Thirdly, we are exactly under the conditions of the Corollary 6.4. Thus,
it gives, after normalisation of the metrics and with (13), that∥∥ωk(t)− c1 (hk(t))∥∥Cr(ωt)

≤ C
∥∥µΩ (hk(t))∥∥op

kn+2−m−1+r/2 ,

where we have used that the geodesic path from 0 to 1 is just a line. Here,
C > 0 is a constant that does not depend on k. If we choose m > r/2 +
1 + n, we get the expected convergence in Cr topology, i.e. inequality
(14). Of course, this reasoning works to get the uniform C0 convergence
in t for t ∈ R+, because all the Kähler metrics ωt that we are using are
uniformly equivalent (we have convergence of the Ω-Kähler flow, thanks to
Theorem 5.1).

A refinement of the ideas above allows us to prove that one has C1

convergence in t of the flows ωk(t), and this is actually sharp. This completes
the proof of Theorem 3.3 and we refer to [9] for details.

7. Open questions

One can ask if the main results of this paper hold at least partially when
one considers non ample classes or degenerate volume forms. Since a notion
of balanced metric for Lp volume forms (and even more general) has been
studied in details in the recent work [32, Sec. 7], we expect the long time
existence and convergence of the Ω-Kähler flow when the volume form Ω is
Lp (p > 1), and semi-positive. This is certainly related to the techniques
developed by Kolodziej in his generalization of the Calabi problem [33].

We also expect that the ideas of this paper can be applied to the J-flow.
Let us recall that the J-flow is a parabolic flow of Kähler potentials defined by
Donaldson on manifolds where two Kähler classes have been fixed a priori
and for which long time existence is proved and convergence is expected
under some cohomological assumptions. To be more precise, let us consider



338 J. Keller

as before M a smooth projective manifold, L, L̃ two ample line bundles,
ω ∈ 2πc1(L) a Kähler form and ω̃ ∈ 2πc1(L̃) another Kähler form on M .
The J-flow is the flow given by

∂φt
∂t

= γ −
ω̃ ∧

(
ω +
√
−1∂∂̄φt

)n−1(
ω +
√
−1∂∂̄φt

)n , (15)

where γ is a topological constant, given by γ =
R

M ω̃∧ωn−1R
M ωn . Donaldson in [34]

showed that a necessary condition to have the existence of a solution of the
limit of the J-flow, i.e. of the equation

ω̃ ∧
(
ω +
√
−1∂∂̄φ

)n−1
= γ

(
ω +
√
−1∂∂̄φ

)n (16)

is that, at the level of the classes, [nγω − ω̃] > 0. An important point from
Donaldson’s geometric construction is that if one considers G the group of
exact ω-symplectomorphisms, it acts on the infinite dimensional manifold
M of diffeomorphisms f : M → M homotopic to the identity. This pro-
vides, with respect to a certain symplectic formM depending on (ω, ω̃), a
moment map in this infinite dimensional setup. The zero of this moment
map corresponds precisely to the (unique) solution of Eq. (16) and the J-flow
to its gradient flow.

Similarly to what we did in Sec. 3, we define the map Hilbω̃ = Met(Lk)→
Met(H0(Lk)) by

Hilb′ω̃(h) =
1
γ

∫
M

h(., .) ω̃ ∧ c1(h)n−1 .

Also, we can define a J-balanced metric as a fixed point of

Tk,ω̃ = FS ◦Hilb′ω̃ .

It is not difficult to check with Proposition 4.1 that if a sequence of
J-balanced metrics does exist for k � 0 and converges, its limit is nec-
essarily a solution to Eq. (16). With (4), we can also define a map on the
space of embeddings ι : M ↪→ PH0(M,Lk)∨

µω̃(ι) =
1
γ

∫
M

µ(ι) ω̃ ∧ (ι∗(ωFS))n−1

which is a moment map for the U(N + 1) action. The zeros of the map

√
−1
(
µω̃ −

tr(µω̃)
N + 1

IdN+1

)
correspond to J-balanced embeddings.
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If one considers Symk the normalized kth symmetric function defined on
Rn then on the cone {x = (x1, . . . , xn)|xi > 0, 1 ≤ i ≤ n} ⊂ Rn, the function

x 7→ Symn(x)
Symn−1(x)

is concave [35]. In the case L = L̃, i.e. when ω and ω̃ belong to the
same Kähler class, this allows us to study the linearization operator of the
application

φ 7→
(
ω +
√
−1∂∂̄φ

)n
ω̃ ∧

(
ω +
√
−1∂∂̄φ

)n−1

for φ strictly ω-plurisubharmonic and smooth. Under these assumptions,
we expect that if a solution of (16) does exist, there exists a convergent
sequence of J-balanced metrics for k � 0 that approximate this solution
in a similar way to the main theorem of [26]. Finally, we expect that the
negative gradient flow of µω̃ converges when k → +∞ towards the J-flow
(15) up to a renormalisation of the time parameter, and thus a similar result
to Theorem 3.3 holds. When no condition holds on the polarisations (L, L̃),
we expect that the algebraic notion of J-balanced metric will allow us to
obtain new obstructions for the existence of solutions to Eq. (16).
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