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In this study, we propose a modification of a method for the extrac-
tion of the dynamics of a system from a time series generated by it. We
focused on the problem of rare events for which a statistical characteriza-
tion is difficult because of their small number. We developed a method
for the separation of the deterministic and stochastic components of the
time series through the computation of probability densities. Our previous
method used a constant width of bins in the histograms for determination
of the probability densities. Here, we replace them by bins with a constant
number of counts. We have tested the method and presented an application
to heart rate variability showing advantages of the modified procedure.

DOI:10.5506/APhysPolBSupp.7.395
PACS numbers: 02.50.Ey, 02.50.Fz, 05.10.Gg, 87.10.Ed

1. Introduction

The analysis of experimental data is difficult not only because of non-
stationarity, length of the time series, the occurrence of artifacts but also
because of the occurrence of rare events. The statistical insignificance of
a rare events result in removal or their replacement. It is well known that
characteristics of extreme events may be crucial in prediction, the modelling
of the processes or in a simple fluctuation analysis of the data [1]. An-
other problem with real time series is the determination of the dynamics of
a system which is disturbed by noise. While measurement noise [2] (random
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variable added to each result of measurement) is relatively easy to remove,
dynamical noise [3] (which interacts with the system) is difficult to recognize
and separate. In this paper, we introduce a method for the extraction of the
deterministic and stochastic components from a discrete time series. This is
our second, expanded study which contains a modified extraction procedure
taking into account rare events.

2. Description of the method

The method of the extraction of the system dynamics from noisy time
series has been developed in our previous work [4]. Here, we modify the
method for the separation of the deterministic and stochastic components
to enable the study of extreme events in the data. Usually, the extreme
values in time series are excluded from the analysis because of their low
statistical significance. Our work is an attempt to include the rare events
in the study without filtering them or their replacement. We begin with a
short description of this method.

Consider a one-dimensional discrete time system with noise. The equa-
tion describing the system has the form

xn+1 = f (xn) + g (xn) ξn . (1)

To simplify the notation, we rewrite Eq. (1) into

x′ = f (x) + g (x) ξ , (2)

where f (x) denotes the deterministic part and g (x) stochastic part of the
dynamics. In equations (1), (2) ξ denotes the noise term. In the present
paper, we assume that the noise in (1) is uncorrelated. However, the gener-
alization of our method for the case of correlated noise is now in progress.
In [4], we showed that if ξ has a stationary distribution with the first two
moments equal to zero and one, respectively, the functions f (x) and g (x)
may be computed from the formulas

f (x) =

+∞∫
−∞

x′q
(
x′ | x

)
dx′ (3)

and

g (x) =

√∫ +∞

−∞
x′2q (x′ | x) dx′ − f2 (x) , (4)
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where q (x′ | x) is the conditional probability density. The final forms of f (x)
and g (x) functions depend on the computation of this density, therefore, we
present the following procedure for the determination q (x′ | x) from real
time series data.

First, we divide the range of the signal into bins. In the basic method [4],
we assumed that all the bins have the same width, i.e. if the number of bins
is equal to N and the minimum and maximum values of the time series
are equal to xmin and xmax, respectively, the width of every bin is equal to
δ = xmax−xmin

N [4]. Next, we search for all the pairs {xk, xk+1} for which
xk = x. This means binning the data and choosing such pairs of points {xk}
and {xk+1} which fall into the same bins with x and x′. If the number of
these pairs is given by Nj , and Ni is the number of the points {xk} = x in
the time series, the conditional probability is computed from

Q

(
xk+1 ∈

(
x′ − δ

2
, x′ +

δ

2

)
| xk ∈

(
x− δ

2
, x+

δ

2

))
=
Nj

Ni
. (5)

The conditional probability density function q (x′ | x) can be now calcu-
lated from the formula

q
(
x′ | x

) ∼= Nj

Niδ
. (6)

For each bin of width δ, the conditional probability Q is determined and in
each the probability density is given by (6). Finally, the integrals in Eqs. (3)
and (4) may be computed by means of the trapeze rule. It is obvious that
the accuracy of calculation of the functions f (x) and g (x) depends on the
width of bins and on the average number of pairs in every bin. This issue
was discussed in details in [4]. In our previous work, we also presented the
results of the application of the method to the logistic and tent map as well
as to heart rate variability data. In the case of the chaotic maps, we obtained
a satisfactory agreement between reconstructed f (x), g (x) and the original
functions used for generation of the time series. However, we observed a
weak point of the method which manifests itself in a poor reconstruction of
the f (x) and g (x) functions for extreme values of RR intervals in the real
time series. This is the result of the low number of data points (RR in-
tervals) in these outside bins. In that regions the functions f (x) and g (x)
exhibit strong fluctuations which originate exactly from low number of data
points. Therefore, the extraction of the noise ξ for both extreme ranges of
the argument may not be accurate. To avoid these problems, we suggest the
modification of our method. The main idea of this modification is division
of time series into uneven bins. In the new division, every bin contains the
same number of counts. As a result, the width of every bin is, in general,
different. Usually, the bins near xmin and xmax are broader than the others.
The density probability in Eq. (6) is now assigned to the middle of the bin.
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Finally, the functions f (x) and g (x) are calculated according to Eq. (6), by
means of the generalized trapeze rule applied to the nonequal bins.

A specific difficulty may appear in the series in which repetitive values
appear, e.g. xi = y for more than one i. In such series, all xi values get
into the one bin and then this bin has too many countings. Moreover,
these repetitive values are NOT placed into surrounding bins. A simple
redistribution into neighbouring bins will result in decreasing number of
elements in the middle bin. To manage this problem, we add to every
element of repetitive values a low random variable (white Gaussian noise —
the precision about its magnitude will be given later) which eliminates the
number of pairs for which xi = xj .

Having reconstructed the functions f (x) and g (x), it is possible to re-
construct the time series for the noise component ξ and then its distribution.
ξ from Eq. (2) is

ξ =
x′ − f (x)
g (x)

. (7)

Moreover, the statistical properties of the noise ξ may be used to estimate
the accuracy of the extraction of the dynamics components from the time
series, when the original deterministic and stochastic terms are not known.
This can be done by comparison of the mean and variance of the extracted
noise and the values: zero and one respectively. These values were assumed
in Eq. (2), which describes the dynamics of the system.

3. Test of the modified method

We tested our method of denoising with the constant width of bins in
the conditional probability density on two time series with different type of
noise: Gaussian and Gumbel [4]. Here, we test the method on the logistic
map with the Gumbel noise [5] added and assuming a zero mean and the
variance equal to one. We used equation

xn+1 = 2.13xn (1− xn) + (0.056xn + 0.02) ξn . (8)

The return map for the series obtained from this equation is presented in
Fig. 1. Here, ξn is the Gumbel noise with the probability density function
(PDF) given by

P (y) =
1

B
exp

(
A− y
B

)
exp

[
− exp

(
A− y
B

)]
. (9)

The parameters A,B > 0 define the mean and the variance. They were
selected to obtain the assumed properties of moments of the noise distribu-
tion. The results of the reconstruction of the functions f (x) and g (x) are
presented in Table I and in Fig. 2.
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Fig. 1. Return map for the logistic map with Gumbel noise. Time series contains
105 points.

TABLE I

The results for f (x) and g (x) for the logistic map with Gumbel noise for a 105

points in time series. Computation were done for 100 bins of unequal width.

f (x) g (x)

Original −2.13x2 + 2.13x 0.056x+ 0.02

Reconstructed −2.08x2 + 2.11x− 0.001 0.050x+ 0.030

Fig. 2. Functions (a) f and (b) g determined using the modified method of denoising
for the logistic map with Gumbel noise. The equations of fitted curve and line are
presented in the last row of Table I.

We observed that the current method gives an increased accuracy for the
function f (x) in comparison to the previous method [4] with the constant
width of bins. The quadratic and linear terms are larger and yield results
which are closer to the original terms while the constant term is smaller.
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The better agreement of the original and the reconstructed functions f (x)
was obtained because here the fitting range was extended in comparison to
the previous method. Unfortunately, the accuracy of g (x) is not enhanced
but note that the magnitude of the noise part in Eq. (8) is very low. In
addition, knowing the noise ξ used in generation of the time series for the
logistic map, we compared the reconstructed noise and original one (see the
distributions in Fig. 3).

Fig. 3. Distribution for the reconstructed noise ξ determined using discrete method
of denoising from logistic map with Gumbel noise and the distribution of the orig-
inal noise ξ used for generation of time series.

The basic statistical properties of the distributions of ξ are given in Ta-
ble II. The reconstruction of the noise was done directly from the extracted
f (x) and g (x). From the differences in the minima and maxima of ξ, we
conclude that the largest deviations result from the outer regions of f (x)
and g (x) functions. We decided to interpolate f (x) and g (x) by fitting pro-
cedure for noise reconstruction. From our procedure we determine the f (x)
and g (x) only for the middle of every bin. As a result of the interpolation

TABLE II

The skewness, kurtosis, minima and maxima for distribution of ξ obtained from
the reconstruction and the original one used in the generation of the time series.

Parameter Reconstructed Original

Skewness 1.28 1.10
Kurtosis −20.38 −20.57
Minimum −3.48 −2.48
Maximum 8.95 8.92
SD 1.03 1.00
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(given by polynomial fitting in windows) we obtain continuous f (x) and
g (x) functions for whole range of argument. Then, we compute the values
of ξ for every point xi using formula (7) with x = xi and x′ = xi+1.

4. Application to heart rate variability

In this section, we present application of the method to a real time
series. We focused on heart rate variability because usually, for healthy
persons, the extreme events are rare. On the other hand, there are many
heart diseases in which arrhythmias occur and result in pairs of a short
RR interval followed by an interval about twice the local average — i.e.
extreme events. We expect that the dynamics obtained using the method
described here, from recordings with different numbers of arrhythmias, will
have different properties and will be characterized by a particular form of
the functions f (x), g (x) and by the noise ξ.

We compared two signals of heart rate variability from male patients
with aortic valve stenosis, one has an ejection fraction 71% (time series are
named by ST acronym) and the second a very low one — 40% (time series
are named by LST acronym). Patients were age 25 and 23 y, respectively.
We analysed 6 hour night-time data sets recorded between 9 p.m. and
6 a.m. The heart rate variability time series — the RR intervals [6] — were
extracted from a 24 h Holter ECG recording using the Del Mar Reynolds
system (Spacelabs) at the Institute of Cardiology (Warsaw, Poland). The
data were checked manually by a cardiologist: normal beats were detected,
artifacts were deleted by hand. For our purpose, it is crucial that no ar-
rhythmia filtering was applied as the occurrence of arrhythmias is a factor
contributing to the level of noise. The series of RR intervals contain many
repetitive values because of the relatively low sampling frequency — here
128 Hz — and the fact that heart rhythm fluctuates around a certain level
during the night. We added small Gausian distributed random variable to
maintain the constant number of points in each bin. We proposed the stan-
dard deviation of that noise smaller than the sampling resolution. If the
data are sampled at 128 Hz then the sampling resolution is 8 ms, so the
standard deviation of the random variable should be assumed at least 1/6th
of 8 ms. We decided to use this fraction because in the range of 6σ there are
99.7% of Gaussian distributed variables, and yields a smooth redistribution
of the RR intervals.

The comparison of the functions f (x) and g (x) obtained from the earlier
version of the method and from the modified version described here is shown
in Fig. 4. Many outlier points (RR < 900 ms) in f (x) obtained from previ-
ous version of the method (Fig. 4 (b)) are integrated into only a few points
in the f (x) function reconstructed using new method (Fig. 4 (d) marked by



402 M. Petelczyc, J.M. Gac

arrows). The g (x) from Fig. 4 (c) fluctuates for short and long extremes
of argument range. Therefore, computation of the noise ξ is impossible, be-
cause we can do fitting for the g (x) only for a narrow range of the argument.
Our modified method gives better results for g (x) (see Fig. 4 (e)). Although
it is difficult to fit a single function for g (x), we may now apply piecewise
fitting. Simultaneously, we also do not remove the few outliers from further
analysis as they are critical for occurrence of rare events.

Fig. 4. (a) Return map for the heart rate variability for the patient ST. Comparison
of the dynamics for the deterministic and the stochastic terms reconstructed using
the method with the constant width of the bins (b), (c) and with the constant
number of points in each bin (d), (e).

The dominance of the modified method is especially seen for heart rate
variability from the patient LST (Fig. 5 (a)), for whom we observe a few
clusters (RR < 800 ms and RR > 1500 ms) around the preserved “comet”
of points [7]. The comet shape is typical for heart rate variability of healthy
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people. Comet shape is seen as a group of points in the return map. This
group of points is concentrated in narrow space for short RR intervals and
then extends for longer RR intervals. The clouds of points outside the comet
are related to large accelerations or decelerations of heart rate and may be
signs of pathology. For the corresponding range of the argument our previous
method does not work well. f (x) fluctuates strongly and that results in large
variations of g (x) (Fig. 5 (c), (e)).

Fig. 5. (a) Return map for heart rate variability for the patient LST. Comparison
of the dynamics for deterministic and stochastic terms reconstructed using the
method with constant bin width (b), (c) and with the constant number of counts
in the bins (d), (e).
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Finally, we compared the results of the reconstruction of the dynamics
described by the function f (x) and the obtained statistical parameters of
ξ distribution for the two time series: ST and LST. The results are pre-
sented in Table III. Note, that the reconstruction of noise was done after
interpolation (piecewise fitting) of both functions f (x) and g (x). Differ-
ences between the properties of the two signals were obtained, especially in
skewness and kurtosis of distribution of ξ. We observed a similarity in f (x)
for the two cases of stenosis patients. However, the statistical parameters of
the ξ distribution differ significantly. We expect that these parameters may
indicate an advancement of the disease. This hypothesis should be verified
by the analysis of numerous HRV series of various stenosis patients.

TABLE III

Comparison of f (x) and the statistical parameters for the extracted noise of the
heart rate variability for ST and LST. The results were obtained from the method
with constant number of counts per bin. For the computation of the functions ξ
f (x) and g (x) were interpolated.

Case f (x) Skewness of ξ distribution Curtosiss of ξ distribution

ST 0.85x+ 208.7 −0.208 −1.025
LST 0.65x+ 425.1 0.968 7.827

5. Conclusions

In this paper, we presented a method of extraction of the deterministic
and stochastic components from discrete time series. This method differs
from our earlier method described in detail in [4]. The difference is given by
the new probability density construction. Previously, we used histograms
with equal bins width. In the present method, the bins do not have an
equal width. They contain an equal number of counts instead. In this
study, we showed that this modification allows us to avoid the difficulties
of reconstruction of deterministic and stochastic part near both ends of X
range. Indeed, in the original method, the marginal bins contain very few
data points that results in fluctuations of computed functions f and g. We
observed that for the modified method these fluctuations do not appear or
have much smaller magnitude. The application of both methods to the
artificial time series (in our case: the logistic map) showed that both the
methods give quite similar results for the forms of the deterministic and
stochastic components. The differences obtained from the analysis of real
data (HRV signals) are more significant. Not only the forms of the functions
f (x) and g (x) are different but also is the distribution of reconstructed
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noise ξ. However, both methods have been developed with the assumption
that the time series are one-dimensional and the noise ξ is independent of x.
These limitations may not be appropriate for experimental data, therefore,
a generalization of the methods should be done. This generalization will be
the subject of our forthcoming paper.
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