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We investigate the scalar meson mass dependence on the chiral phase
transition in the framework of an SU(3), (axial)vector meson extended lin-
ear sigma model with additional constituent quarks and Polyakov loops.
We determine the parameters of the Lagrangian at zero temperature in a
hybrid approach, where we treat the mesons at tree-level, while the con-
stituent quarks at 1-loop level. We assume two nonzero scalar condensates
and together with the Polyakov-loop variables we determine their temper-
ature dependence according to the 1-loop level field equations.
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1. Introduction

The investigation of the QCD phase diagram is a very important subject
both theoretically and experimentally nowadays. The ongoing and future
heavy ion experiments such as RHIC, and CERN/LHC study the low density
part of the phase diagram which can also be investigated theoretically by
lattice QCD, at CBM/FAIR the high density part will be studied, which is
still not settled theoretically, so it is worth to investigate the phase diagram
thoroughly.
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Our starting point is the (axial)vector meson extended linear sigma
model with additional constituent quarks and Polyakov-loop variables. The
previous version of the model, without constituent quarks and Polyakov-
loops, was exhaustively analyzed at zero temperature in [1–3]1. The La-
grangian of the model is given by
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where

DµΦ = ∂µΦ− ig1(LµΦ− ΦRµ)− ieAµe [T3, Φ] ,

Lµν = ∂µLν − ieAµe [T3, L
ν ]− {∂νLµ − ieAνe [T3, L

µ]} ,
Rµν = ∂µRν − ieAµe [T3, R

ν ]− {∂νRµ − ieAνe [T3, R
µ]} .

Here, Φ stands for the scalar and pseudoscalar fields, Lµ and Rµ for the
left- and right-handed vector fields, Ψ = (u, d, s)T for the constituent quark
fields, while H for the external field.

2. Parametrization

In order to go to finite temperature/chemical potential, parameters of the
Lagrangian have to be determined, which is done at T = µ = 0. For this, we
calculate tree-level masses and decay widths of the model and compare them
with the experimental data taken from the PDG [4]. For the comparison, we
use a χ2 minimalization method [5] to fit our parameters (for more details,
see [1]). It is important to note that in the present work we also included
in the scalar and pseudoscalar masses the contributions coming from the
fermion vacuum fluctuations by adapting the method of [6].

1 In the present work, we use a different anomaly term (c1 term). This, however, does
not influence the results much.
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We have 14 unknown parameters, namely m0, λ1, λ2, c1, m1, g1, g2, h1,
h2, h3, δS , ΦN, ΦS, and gF . Here, gF is the coupling of the additionally
introduced Yukawa term, which can be determined from the constituent
quark masses through the equations mu/d = gFφN/2, ms = gFφS/

√
2.

It is worth to note that if we do not consider the very uncertain scalar–
isoscalar sector m0, and λ1 always appear in the same combination C1 =
m2

0 + λ1
(
φ2N + φ2S

)
in all the expressions, then we cannot determine them

separately. Additionally, a similar combination appears for m1 and h1 in the
vector sector as C2 = m2

1 + h1
2

(
φ2N + φ2S

)
(see details in [1]). The parameter

values of the fit without scalars are given in Table I. Since λ1 and h1 are
undetermined they can be tuned to select the fL0 (a.k.a. σ) from the scalar
spectrum (by its mass and decay widths) and its mass has, as we will see, a
huge effect on the thermal properties of the model.

TABLE I

Parameters determined by χ2 minimalization.

Parameter Value Parameter Value

φN [GeV] 0.1622 h2 11.6586
φS [GeV] 0.1262 h3 4.7028
C1 [GeV2] −0.7537 δS [GeV2] 0.1534
C2 [GeV2] 0.3953 c1 [GeV] 1.12
λ1 undetermined g1 −5.8943
λ2 65.3221 g2 −2.9960
h1 undetermined gF 4.9429

3. Field equations

In our approach, we have four order parameters, which are the φN non-
strange and φS strange condensates, and the Φ and Φ̄ Polyakov-loop vari-
ables. The condensates arise due to the spontaneous symmetry breaking2,
while the Polyakov-loop variables naturally emerge in mean field approxima-
tion, if one calculates free fermion grand canonical potential on a constant
gluon background. The effect of fermions propagating on a constant gluon
background in the temporal direction formally amounts to the appearance
of imaginary color dependent chemical potentials (for details, see [7, 8]).

At finite temperature/baryochemical potential, we can set up four cou-
pled field equations for the four fields, which are just the requirements that
the first derivatives of the grand canonical potential according to the fields
must vanish. As a first approximation, we apply a hybrid approach in which

2 Since isospin symmetry is assumed, we have only two condensates: φN and φS.
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we only consider vacuum and thermal fluctuations for the fermions, but not
for the bosons. We use a mean field Polyakov-loop potential U(Φ, Φ̄) of a
polynomial form with coefficients determined in [9]. Within this simplified
treatment, the equations are the following:

− d

dΦ

(
U
(
Φ, Φ̄

)
T 4

)
+

2Nc

T 3

∑
q=u,d,s

∫
d3p

(2π)3

(
e−βE

−
q (p)

g−q (p)
+
e−2βE

+
q (p)

g+q (p)

)
= 0 ,

(2)

− d

dΦ̄

(
U
(
Φ, Φ̄

)
T 4

)
+

2Nc

T 3

∑
q=u,d,s

∫
d3p

(2π)3

(
e−βE

+
q (p)

g+q (p)
+
e−2βE

−
q (p)

g−q (p)

)
= 0 ,

(3)

m2
0φN +

(
λ1 +

1

2
λ2

)
φ3N + λ1φNφ

2
S − hN +

gF
2
Nc

(
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with the modified distribution functions
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4. Results

Solving Eqs. (2)–(5) we get the temperature dependence of the order
parameters, which can be seen in Fig. 1 (left). In [1], it was shown that the qq̄
scalar nonet most probably contains f0s with masses higher than 1 GeV. If we
set λ1 = 0, we get mfL0

= 1.3 GeV, which is in agreement with [1]. However,
in this case, we get a very high pseudocritical temperature, Tc ≈ 550 MeV,
for φN, which is much larger than earlier results (e.g. on lattice Tc ≈ 150 MeV
[10]). Now, if we tune λ1 to get mfL0

= 400 MeV (which corresponds to the
physical particle f0(500)), than Tc goes down to 150–200 MeV, which can be
seen in Fig. 1 (right). This finding is in line with the results of [11], where
they used a similar model, but without vector mesons. This suggests that
in order to get a good pseudocritical temperature we would need a scalar–
isoscalar particle with low mass (∼ 400 MeV), which is probably not a qq̄
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Fig. 1. Left: Temperature dependence of the order parameters with mσ = 1.3 GeV.
Right: Temperature dependence of the order parameters with mσ = 0.4 GeV.
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Fig. 2. Left: Temperature dependence of the scalars with mσ = 1.3 GeV. Right:
Temperature dependence of the scalars with mσ = 0.4 GeV.
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state according to [1]. In Fig. 2 (left) and (right) we show the temperature
dependence of the scalar meson masses. The mass of the parity partners (π
and fL0 ) reaches the same value above the phase transition temperature.
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