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Saturation and geometrical scaling (GS) of gluon distributions are a
consequence of the non-linear evolution equations of QCD. We argue that
in pp, GS holds for the inelastic cross section rather than for the multiplicity
distributions. We also discuss possible fluctuations of the proton saturation
scale in pA collisions at the LHC.
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At the eQCD meetings in 2013 and 2015 [1, 2], we discussed the emer-
gence of geometrical scaling for F2(x)/Q

2 [3] in deep inelastic scattering
(DIS) [4], and for charged particle multiplicity distributions in proton–proton
collisions [5], and in heavy-ion collisions (HI) [6]. Here, after a short re-
minder, we recall recent analysis [7] of ALICE pp data [8], and discuss a
hypothesis that the saturation scale may fluctuate in the proton [9] on the
example of the pA scattering as measured by ALICE [10] at the LHC.

The cross section for not too hard gluon production in pp collisions can
be described in the kT-factorization approach by the formula [11]
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where ϕp denotes the unintegrated gluon distribution that, in principle, de-
pends on two variables ϕp = ϕp(k

2
T, x). In Eq. (1), we have assumed that

produced gluons are in the mid-rapidity region (y ' 0), hence both Bjorken
xs of colliding glouns are equal to x1 ' x2 (denoted in the following as x).
Note that unintegrated gluon densities have dimension of transverse area.
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This is best seen from the very simple parametrization proposed by Kharzeev
and Levin [12] in the context of HI collisions
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k2T
)
= S⊥
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s

k2T/Q
2
s for Q2
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(2)

or by Golec–Biernat and Wüsthoff in the context of DIS [13]

ϕp
(
k2T
)
= S⊥

3

4π2
k2T
Q2

s

exp
(
−k2T/Q2

s

)
. (3)

In the case of DIS, S⊥ = σ0 is the dipole–proton cross section for large
dipoles and in (2), S⊥ is the transverse size of an overlap of two large nu-
clei for a given centrality class. In both cases, one can assume that S⊥ is
energy-independent (or weakly dependent). Another feature of (2) and (3)
is that ϕp(k2T, x) = ϕp(k

2
T/Q

2
s (x)), where Q2

s (x) is the saturation momen-
tum that takes the following form Q2

s (x) = Q2
0(x/x0)

−λ motivated by the
traveling wave solutions [14] of the non-linear Balitski–Kovchegov evolution
equations [15]. In that case, d2~kT integration in (1) leads to

dσ

dyd2pT
= S2

⊥F(τ) , (4)

where τ = p2T/Q
2
s (x) is a scaling variable and F(τ) is a function related to

the integral of ϕps. We shall follow here the parton–hadron duality [16],
assuming that the charged particle spectra are on the average identical to
the gluon spectra. Equation (4) has the property of GS if S⊥ is energy-
independent. In this case, the entire energy dependence is taken care of by
the energy dependence of τ.

In order to test relation (4), we shall use the fact that for mid-rapidity

τ = p2T/Q
2
s (x) = p2T/Q

2
0 (pT/(x0W ))λ , (5)

where W =
√
s, x0 and Q2

0 are constants that are irrelevant for the present
analysis. We take Q2

0 = 1 GeV2/c, x0 = 10−3. The only relevant parameter
is λ. In Fig. 1, we plot ALICE pp data [8] in terms of pT (left panel) and
in terms of scaling variable τ (right panel) for λ = 0.32. We see that three
different curves from the left panel in Fig. 1 overlap over some region if
plotted in terms of the scaling variable τ . The exponent for which this
happens over the largest interval of τ is λ = 0.32 [7], which is the value
compatible with our model-independent analysis of the DIS data [4].
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Fig. 1. (Color online) Data for pp scattering from ALICE [8] plotted in terms of
pT and

√
τ . Full (black) circles correspond to W = 7 TeV, down (red) triangles to

2.76 TeV and up (blue) triangles to 0.9 TeV.

In order to illustrate the method of adjusting λ, we plot in Fig. 2 ratios
of the cross sections at 7 TeV to 2.76 and 0.9 TeV. Approximate equality
of both ratios close to unity for λ = 0.32 is the sign of GS for pT up to
4.25 GeV/c [7].
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Fig. 2. (Color online) Ratios of the cross sections at 7/2.76 TeV — down (red)
triangles and 7/0.9 TeV — up (blue) triangles, for λ = 0 (left) and 0.32 (right).

It has been argued previously that GS should hold for multiplicities,
rather than for the cross sections. This would be true if the relation between
the two was energy-independent. This may be the case in HI or pA collisions
where we trigger on some S⊥ by selecting the centrality classes with given
number of participants, but it is not true in the case of the inelastic pp
scattering
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dN

dyd2pT
=

1

σMB(W )

dσ

dyd2pT
=

S2
⊥

σMB(W )
F(τ) , (6)

where the minimum bias cross section σMB(W ) 6= S⊥ is energy-dependent.
Repeating the procedure of constructing the ratios of the multiplicities rather
than of the cross sections, we find the best scaling for λ = 0.22 ÷ 0.24 [7].
This is illustrated in Fig. 3 where the left panel is just an enlarged version
of the right plot of Fig. 2, whereas the right panel corresponds to the ratios
of the multiplicities for λ = 0.22. We see that, indeed, multiplicity scaling
is achieved for smaller λ, but — at the same time — the scaling is of worse
quality than for the cross sections and holds over a smaller interval of τ .
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Fig. 3. Ratios of cross sections (left) for λ = 0.32 and multiplicities (right) for
λ = 0.22. For the meaning of symbols, see Fig. 2.

In the case of two different systems, like in the pA scattering and/or y 6=0,
formula (1) contains two different distributions ϕp,A characterized by two
different saturation scales Qp,A(k2T/s,±y). With simple parametrization (2)
and assuming constant S⊥corresponding to the definite centrality class, one
arrives at a very simple formula for charged particle multiplicity [12]

dNch

dy
= S⊥Q

2
p

(
2 + ln

Q2
A

Q2
p

)
. (7)

Formula (7) predicts both energy and rapidity dependence and also Npart
dependence of multiplicities through the dependence of the saturation scales
upon these quantities [12] (apart from S⊥ dependence on Npart)

Q2
p(W, y) = Q2

0

(
W

W0

)λ
exp(λy) ,

Q2
A(W, y) = Q2

0Npart

(
W

W0

)λ
exp(−λy) , (8)

where we take λ = 0.32 as in DIS [4] and pp [7].
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Fig. 4. Multiplicity spectra from Ref. [10] compared with the prediction of Eq. (7)
without (left) and with fluctuations (right). For the meaning of symbols, see
Ref. [9]. Normalization of theoretical predictions has been fitted and is given by
Eq. (10).

It has been shown in Ref. [9] that these simple formulae fail to describe
recent proton–Pb LHC data [10]. To resolve this issue, we have proposed to
take into account possible fluctuations of the saturation scale in the proton
according to the log-Gaussian distribution introduced in Ref. [17]

P (ρ) =
1√
2πσ

exp

(
−
(
lnQ2

s/Q
2
0 − lnQ2

p/Q
2
0

)2
2σ2

)
. (9)

Here, Q2
s is the proton saturation momentum fluctuating around its logarith-

mic average denoted as lnQ2
p (with Q2

0 being an arbitrary momentum scale,
which cancels out in (9)) and σ is the fluctuation width, which we assume to
be y-independent (although it may, in principle, depend onW ). Taking into
account fluctuations (9) and the transformation from y to pseudorapidity η
[9], we have been able to describe the multiplicity distributions adjusting
the normalization in Eq. (7) for each centrality class. In Fig. 4, we show the
results for the ALICE data for centrality class determination by the ZNA
method (Npart = NPb−side

coll + 1 from Table 7 in Ref. [10], whereas in Ref. [9]
we have used V0A centrality determination). As in Ref. [9], we have to take
rather large σ ∼ 1.55 to describe the data. The normalization S⊥ has been
fitted to the data by means of the logarithmic parametrization

S⊥ = (0.88 + 0.47 lnNpart)
2 . (10)

To summarize: We have presented new developments in the studies of
GS for small systems, i.e. for pp and pA collisions. We have shown that a
good quality scaling in pp is achieved for the inelastic cross sections rather
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than for the multiplicities. In the case of pA collisions, we have reported on
a recent proposal to include the fluctuations of the saturation scale of the
proton in order to describe recent data on multiplicity distributions dNch/dη
for different centrality classes.

This work was supported by the Polish National Science Centre grant
2014/13/B/ST2/02486.
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