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In a recent paper [arXiv:1506.06649 [nlin.CG]], we presented an ex-
ample of a 3-state cellular automaton which exhibits behaviour analogous
to degenerate hyperbolicity often observed in finite-dimensional dynamical
systems. We also calculated densities of 0, 1 and 2 after n iterations of this
rule, using finite state machines to conjecture patterns present in preim-
age sets. Here, we re-derive the same formulae in a rigorous way, without
resorting to any semi-empirical methods. This is done by analysing the
behaviour of continuous clusters of symbols and by considering their inter-
actions.
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The general question of finding the iterates of the Bernoulli measure
under a given cellular automaton (CA) has been subject of many recent
studies, including, among others, [1–8]. A more specific question of this
type is sometimes called the density response problem: If the probability
of occurrence of a certain state in the initial configuration drawn from a
Bernoulli distribution is given, what is the probability of occurrence of this
state after n iterations of the CA rule?

Of course, one could ask a similar question about the probability of
occurrence of longer blocks of symbols after n iterations of the rule. Due
to the complexity of CA dynamics, it is clear that questions of this type
are rather hopeless if one wants to know the answer for an arbitrary rule.
In spite of this, it may still be possible to find the answer if the rule is
sufficiently simple.

∗ Presented at the Summer Solstice 2015 International Conference on Discrete Models
of Complex Systems, Toronto, Ontario, Canada, June 17–19, 2015.

(49)



50 H. Fukś, J. Midgley-Volpato

One of the methods which can be used to do this is studying the struc-
ture of preimages of short blocks and detecting patterns present in them.
This approach has been successfully used for a number of deterministic CA
rules, such as elementary rules 172, 142, 130 (references [9, 10] and [11], re-
spectively), and several others. It has also been used for a special class of
probabilistic CA, known as single-transition α-asynchronous rules [12].

Cellular automata are infinitely-dimensional dynamical systems, yet a
behaviour similar to hyperbolicity in finite-dimensional systems has been
observed in many of them. In particular, in some binary cellular automata
in one dimension, known as asymptotic emulators of identity, if the initial
configuration is drawn from a Bernoulli distribution, the expected proportion
of ones (or zeros) usually tends to its stationary value exponentially fast [13].
This type of behaviour is quite common in many other dynamical systems.
For example, in a linear continuous-time dynamical system given by ẋ = Ax,
if x : R→ Rn and A is a real n× n matrix with all eigenvalues distinct and
having negative real parts, x(t) tends to zero exponentially fast as t → ∞.
Exponential convergence is also observed in nonlinear systems ẋ = f(x)
(where f : Rn → Rn) in the vicinity of a hyperbolic fixed point, as long
as the Jacobian matrix of f evaluated at the fixed point has only distinct
eigenvalues with negative real parts.

If, on the other hand, the matrix A in ẋ = Ax has degenerate (re-
peated) eigenvalues, the convergence to the fixed point can be polynomial-
exponential, that is, of the form of P (t)e−bt, where P (t) is a polynomial
and b > 0. Finite dimensional discrete-time dynamical systems can exhibit
analogous behaviour. Consider, for example, the linear system[

xn+1

yn+1

]
=

[
0 1
−1

4 1

] [
xn
yn

]
. (1)

The matrix on the right-hand side has a degenerate (double) eigenvalue 1
2

and, therefore, the convergence to the fixed point (0, 0) is expected to be
polynomial-exponential (linear-exponential in this case). Indeed, if we ex-
plicitly solve the above equation for xn and yn, we obtain[

xn
yn

]
=

(
1

2

)n [
1− n 2n
−n

2 1 + n

] [
x0
y0

]
, (2)

and we can clearly see the aforementioned linear-exponential convergence.
Very recently, a probabilistic CA has been discovered [14] where the den-

sity of ones converges to its stationary value in a linear-exponential fash-
ion, just like in the above example of a degenerate hyperbolic fixed point
in a finite-dimensional dynamical systems. This probabilistic CA could be
viewed as a simple model for diffusion of innovations, spread of rumours, or a
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similar process involving transport of information between neighbours. More
precisely, it consists of an infinite one-dimensional lattice where each site is
occupied by an individual who has already adopted the innovation (state 1)
or who has not adopted it yet (state 0). Once the individual adopts the
innovation, he remains in state 1 forever. Individuals in state 0 can change
their states to 1 (adopt the innovation) with probabilities depending on the
state of nearest neighbours. This process can be formally described as a
radius 1 binary probabilistic CA with the following transition probabilities,

w(1|000) = 0 , w(1|001) = p , w(1|010) = 1 , w(1|011) = 1 ,

w(1|100) = q , w(1|101) = r , w(1|110) = 1 , w(1|111) = 1 , (3)

where p, q, r are fixed parameters of the model, p, q, r ∈ [0, 1]. By transition
probability w(d|abc), one means the probability that site in state b with
neighbours a and c changes its state to d in one time step. One can show
that for a certain choice of parameters p, q and r, the expected value of the
density of ones converges to its steady state in a linear-exponential fashion.

Even more recently, we found a deterministic rule with three states which
exhibits the same kind of behaviour [15]. This rule, to be defined in Sec. 2,
will be the subject of our subsequent discussion. In [15], we studied the
structure of preimages of 0, 1 and 2 under the action of this rule, and by
employing finite state machines, we found some patterns in the preimage
sets, which, in turn, allowed us to derive explicit expressions for densities of
0, 1 and 2 after n iterations. The finite state machines used in the derivation
were constructed semi-empirically, and no proof of their correctness was
given. In the current paper, we wish to fill this gap and present a more
formal derivation of the aforementioned expressions, without resorting to
finite state machines.

1. Basic definition

We will start from some basic definitions. For A = {0, 1, 2}, a finite
sequence of elements of A, b = b1b2 . . . bn, will be called a block (or word) of
length n. The set of all blocks of all possible lengths will be denoted by A?.

Let f : A3 → A be a local function of a nearest-neighbour cellular
automaton. A block evolution operator corresponding to f is a mapping
f : A? 7→ A? defined as follows. Let a = a1a2 . . . an ∈ An, where n ≥ 3.
Then, f(a) is a block of length n− 2 defined as

f(a) = f(a1, a2, a3)f(a2, a3, a4) . . . f(an−2, an−1, an) . (4)

If f(b) = a, then we will say that b is a preimage of a, and write b ∈ f−1(a).
Similarly, if fn(b) = a, then we will say that b is an n-step preimage of a,
and write b ∈ f−n(a).
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Let the density polynomial associated with a string b = b1b2 . . . bn be
defined as

Ψb(p, q, r) = p#0(b)q#1(b)r#2(b) , (5)

where #i(b) is the number of occurrences of symbol i in b. If A is a set of
strings, we define the density polynomial associated with A as

ΨA(p, q, r) =
∑
a∈A

Ψa(p, q, r) . (6)

One can easily show (in a manner similar as done in [13]) that if one
starts with a bi-infinite string of symbols drawn from a Bernoulli distribu-
tion where probabilities of 0, 1 and 2 are, respectively, p, q and r, then the
expected proportion of sites in state k after n iterations of rule f is given
by Ψf−n(k)(p, q, r). This quantity will be called density of symbols k after n
iterations of f .

2. The local rule and its properties

Let us now describe the CA rule which will be the subject of this con-
tribution. While studying properties of various 3-state CA rules, we came
across an interesting specimen of a nearest-neighbour (radius 1) rule with a
local function defined as follows

f(x1, x2, x3) =

{
x3 for x1 = x2 > x3 ,
x2 otherwise ,

(7)

where x1, x2, x3 ∈ {0, 1, 2}. The origins of this rule have been described
in [15]. Here, we will only note that it can be equivalently defined as

f(x1, x2, x3) =

 0 for (x1, x2, x3) = (1, 1, 0) or (x1, x2, x3) = (2, 2, 0) ,
1 for (x1, x2, x3) = (2, 2, 1) ,
x2 otherwise ,

(8)
which makes it clear that it differs from the identity rule only on three
neighbourhood configurations, (1, 1, 0), (2, 2, 0) and (2, 2, 1).

Figure 1 shows an example of a spatio-temporal pattern generated by
this rule, using periodic boundary conditions. It has some important prop-
erties which will be relevant to further discussion. First of all, note that
f(x1, x2, x3) ≤ x2, meaning that the state of a given cell cannot increase.
This implies that f(?, 0, ?) = 0, where ? denotes an arbitrary symbol from
the set {0, 1, 2}. Zero is thus a quiescent state for this CA.
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We also have f(0, 1, ?) = 1 and f(2, 1, ?) = 1, which implies that a site
in state 1 located at the beginning of a continuous cluster of 1s of any length
(even of length 1, meaning isolated 1) remain in state 1 forever. The same
is true for 2: since f(0, 2, ?) = 2 and f(1, 2, ?) = 2, a site in state 2 located
at the beginning of a continuous cluster of 2s stays in state 2 forever. This
can be observed in Fig. 1. In fact, words such as 01 or 02 remain unchanged
when the rule is iterated, and no information can propagate through a pair
sites which are in states 01 or 02. We note in passing that in the CA theory
such words are called blocking words, and the rules with blocking words are
known to be almost equicontinuous [16].

i

t

Fig. 1. (Colour on-line) Sample spatio-temporal pattern generated by 3-state rule
140. White, lighter grey and darker grey (blue) cells correspond, respectively, to
0, 1 and 2.

Further inspection of Fig. 1 reveals that a continuous cluster of zeros
grows to the left if it is preceded by a cluster of 2s longer than 1, and it also
grows to the left if is preceded by a cluster of 1s longer than 1.

3. Structure of preimages of 1

We want to find all strings b of length 2n+ 1 such that fn(b) = 1. We
know from the definition of the rule that information can propagate only
from the right to the left, thus the first n− 2 entries of b are arbitrary. We
will represent n-step preimages of 1 in the form of

b = ? ? . . . ?︸ ︷︷ ︸
n−2

a1a2a3c1c2 . . . cn ,

where the allowed values of a1, a2, a3 (to be called a prefix ) and c1c2 . . . cn (to
be called a postfix ) need to be determined. The central site of the preimage
string will be, as in the above, denoted by a bold symbol. Since our CA rule
has three states, there are 33 = 27 possible values for the prefix a1a2a3. Not
all of them are possible, however. Prefixes 000, 010, 020, 100, 110, 120,
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200, 210 and 220, which can be represented as ? ? 0, cannot occur in any
preimage of 1. This is because f(?, 0, ?) = 0, meaning that if the central site
is in state 0, it will remain in state 0 forever, and consequently fn(b) = 0
for any string b containing one of the above prefixes.

Moreover, prefixes of the type ?02 or ?12 are not allowed either. This
is because for the central site to become 1, as required, the transition
f(2, 2, 1) = 1 would have to happen somewhere along the way, and for
this the central 2 would have to get 2 as the left neighbour. Since states
can only decrease, not increase, and the left neighbour of the central site is
0 or 1, this is not possible.

By excluding 9 prefixes of the type ??0 and 6 prefixes of the type ?02 or
?12 we are left with 12 possibilities, 001, 011, 021, 101, 111, 121, 201, 211,
221, 022, 122, 222. All of them are allowed in preimages of 1, providing
that an appropriate suffix is added. In what follows, we will find conditions
which these suffices need to satisfy. We will divide the possible prefixes into
four different types (the reason for this will soon become clear):

1. ?11, 221

2. ?01, 021, 121

3. 022, 122

4. 222

For prefixes of type 1, ?11 and 221, the central site is in the state 1 already,
thus we have to make sure that it stays in the same state after n iterations of
the rule. The left neighbour of the central 1 is 1 (for ?11) or it will become 1
after one iteration (for 221), thus we could potentially be in a danger of the
transition f(1, 1, 0) = 0. This could happen only if the central 1 belongs to a
continuous cluster of ones which is followed by 0 — in such a case, the cluster
of ones will shrink one symbol per time step and the transition f(1, 1, 0) = 0
will eventually change the central 1 into 0. We have, therefore, two choices
in avoiding this scenario: either the central 1 belongs to a cluster of ones
followed by 2, which prevents its shrinking due to the fact that f(1, 1, 2) = 1,
or it belongs to a cluster of ones which extends all the way to the right. In
other words, the postfix for type 2 must be of the form

c1c2 . . . cn = 1i2 ? ? . . . ?︸ ︷︷ ︸
n−1−i

or c1c2 . . . cn = 1n ,

where i ∈ {0, 1, . . . n− 1}. In the above and in what follows, 1n denotes the
symbol 1 repeated n times. We will use this convention in the rest of the
paper.
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For type 2, ?01, 021, and 121, note that the central site could become 0
only by utilizing the transition f(1, 1, 0) = 0, and for this the left neighbour
of the central 1 would have to be 1. This is clearly impossible for ?01 as the
left neighbour 0 will always remain 0. In the case of 021 and 121, the left
neighbour is 2, and it could potentially become 0 by transition f(2, 2, 0) = 0.
For this, however, we would need the second left neighbour of the central 1
to be in state 2, but this is impossible because site values never increase.
Thus all prefixes of type 2 belong to preimages of 1, regardless of the suffix.

For type 3, 022, 122, the central site is in state 2, and its left neighbour
is guaranteed to be in state 2 forever. Consequently, the central 2 must
change to 1 at some iteration via the f(2, 2, 1) = 1 transition, and in order
for this to happen, we need to have the right neighbour of the central site in
state 1 at some point of time. This can happen when the central 2 belongs
to a continuous cluster of 2s followed by 1, meaning that the postfix must
be of the form

c1c2 . . . cn = 2i1 ? ? . . . ?︸ ︷︷ ︸
n−1−i

,

where i ∈ {0, 1, . . . n− 1}.
Type 4 with the prefix 222 is the most complicated one. Similarly as

before, the central site must change from 2 to 1, and this can only happen
via the transition f(2, 2, 1) = 1, but we do not have a guarantee that the left
neighbour of the central 2 remains in state 2 forever, as it was the the case
of type 3. Nevertheless, the necessary condition for the suffix is the same as
for type 3, meaning that the central 2 must belong to a continuous cluster
of 2s followed by 1. This in not sufficient, however, because what follows is
also important. In order to understand this clearly, consider two strings of
length 13 iterated 6 times:

0000222221012 0000122221012
00022221101 00012221101
002221100 001221100
0221100 0121100
21100 12100
100 210
0 1

The first of these strings has prefix 222, and the second one has prefix 122
(thus belonging to type 3). In both of them, the central 2 belongs to a
continuous cluster of 2s followed by 1, but the first one does not produce 1
after 6 iterations. This is because the zero which follows propagates to the
left and eventually makes the central site to change to 0 via the transition
f(1, 1, 0) = 0. Any string containing 222 as a prefix must, therefore, satisfy
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an additional property preventing zeros to propagate to the left. This can
be done by making the last part of the suffix to have the same structure as
prefix of type 3, so that the entire suffix takes the form

c1c2 . . . cn = 2i1d1d2 . . . dn−1−i , (9)

where i ∈ {0, 1, . . . , n− 1} and where

d1d2 . . . dn−1−i = 1j2 ? ? . . . ?︸ ︷︷ ︸
n−2−i−j

or d1d2 . . . dn−1−i = 1n−1−i , (10)

with j ∈ {0, 2, . . . , n− 2− i}.
Finally, for prefix 222, there is one more possibility not covered by the

above discussion, namely c1c2 . . . cn = 2n−210. Below, we summarize all
these findings in a form of a single proposition.

Proposition 3.1 Block b belongs to f−n(1) if and only if it is one of the
following four types.

Type 1:

b = ? ? . . . ?︸ ︷︷ ︸
n−2

a1a2a31
i2 ? ? . . . ?︸ ︷︷ ︸

n−1−i

or b = ? ? . . . ?︸ ︷︷ ︸
n−2

a1a2a31
n , (11)

where a1a2a3 ∈ {011, 111, 211, 221}, i ∈ {0, 1, . . . , n− 1};

Type 2:
b = ? ? . . . ?︸ ︷︷ ︸

n−2

a1a2a3 ? ? . . . ?︸ ︷︷ ︸
n

, (12)

where a1a2a3 ∈ {001, 101, 201, 121, 021};

Type 3:
b = ? ? . . . ?︸ ︷︷ ︸

n−2

a1a2a32
i1 ? ? . . . ?︸ ︷︷ ︸

n−1−i

, (13)

where a1a2a3 ∈ {022, 122}, i ∈ {0, 1, . . . , n− 1};

Type 4a:
b = ? ? . . . ?︸ ︷︷ ︸

n−2

a1a2a32
i1c1c2 . . . cn−1−i , (14)

where a1a2a3 = 222, i ∈ {0, 1, . . . , n− 1} and where

c1c2 . . . cn−1−i = 1j2 ? ? . . . ?︸ ︷︷ ︸
n−2−i−j

or c1c2 . . . cn−1−i = 1n−1−i (15)

with j ∈ {0, 2, . . . , n− 2− i};
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Type 4b:
b = ? ? . . . ?︸ ︷︷ ︸

n−2

a1a2a32
n−210 , (16)

where a1a2a3 = 222.

4. Density polynomials for preimages of 1

Let us now denote the set of strings of type 1 by T1, type 2 by T2 etc.,
and let us define λ = p+ q + r. Density polynomial for T1 will be given by

ΨT1(p, q, r) =

n−1∑
i=0

λn−2
(
pq2 + q3 + rq2 + r2q

)
qirλn−i−1

+λn−2
(
pq2 + q3 + rq2 + r2q

)
qn , (17)

which simplifies to

ΨT1(p, q, r) = λ2n−3r
(
λq2 + r2q

) n−1∑
i=0

λ−iqi + λn−2
(
λq2 + r2q

)
qn . (18)

By performing summation of the partial geometric sequence in the above,
one obtains

ΨT1(p, q, r) = λn−2r
(
λq2 + r2q

) λn − qn
p+ r

+ λn−2
(
λq2 + r2q

)
qn , (19)

which further simplifies to

ΨT1(p, q, r) = r
(
λq2 + r2q

) λ2n−2
p+ r

+ λn−2
(
λq2 + r2q

) pqn

p+ r
. (20)

Similar calculations (omitted here) yield

ΨT2(p, q, r) =
(
λpq + q2r + pqr

)
λ2n−2 , (21)

ΨT3(p, q, r) = λn−2r2q (λn − rn) . (22)

The type 4a is the most complicated. Let us first compute the density
polynomial for the set of strings of the form of

c1c2 . . . ck = 1j2 ? ? . . . ?︸ ︷︷ ︸
k−1−j

or c1c2 . . . ck = 1k , (23)
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with j ∈ {0, 1, . . . , k − 1}. The density polynomial for the above, to be
denoted by hk(p, q, r), is given by

hk(p, q, r) =
k−1∑
j=0

qjrλk−1−j + qn = r
λk − qk

p+ r
+ qk =

rλk

p+ r
+

pqk

p+ r
. (24)

Having this result, we can write the density polynomial for the entire set
T4a

ΨT4a(p, q, r) = λn−2r3
n−1∑
i=0

riqhn−1−i(p, q, r)

= λn−2r3
n−1∑
i=0

riq
rλn−1−i

p+ r
+ λn−2r3

n−1∑
i=0

riq
pqn−1−i

p+ r

=
λn−2qr4

p+ r

n−1∑
i=0

riλn−1−i +
λn−2pqr3

p+ r

n−1∑
i=0

riqn−1−i

=
λn−2qr4(λn − rn)
(p+ r)(p+ q)

+
λn−2pqr3

p+ r

n−1∑
i=0

riqn−1−i . (25)

When q 6= r, we thus obtain

ΨT4a(p, q, r) =
λn−2qr4(λn − rn)
(p+ r)(p+ q)

+
λn−2pqr3(qn − rn)

(p+ r)(q − r)
. (26)

When q = r, the last sum becomes
∑n−1

i=0 r
iqn−1−i =

∑n−1
i=0 q

n−1 = qn−1n,
therefore,

ΨT4a(p, q, q) =
λn−2q5(λn − qn)

(p+ q)2
+
λn−2pq3

p+ q
nqn . (27)

Finally, type 4b is straightforward,

ΨT4b
(p, q, r) = λn−2rn+1pq . (28)

We are now ready to compute the density polynomial of preimages of 1,
by summing density polynomials for T1, T2, T3, T4a and T4b. This yields, for
q 6= r,

Ψf−n(1)(p, q, r) = r
(
λq2 + r2q

) λ2n−2
p+ r

+ λn−2
(
λq2 + r2q

) pqn

p+ r

+
(
λpq + q2r + pqr

)
λ2n−2 + λn−2r2q (λn − rn)

+
λn−2qr4(λn − rn)
(p+ r)(p+ q)

+
λn−2pqr3(qn − rn)

(p+ r)(q − r)
+λn−2rn+1pq .

(29)
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Collecting together terms for (qλ)n, (rλ)n, and λ2n, we obtain, after some
algebra

Ψf−n(1)(p, q, r) =
pq2

(
−pr + pq + q2

)
(qλ)n

λ2 (p+ r) (q − r)

+
qr
(
−p2r + p2q + pq2 − 2 pqr + r3 − q2r

)
(rλ)n

λ2 (p+ q) (q − r)

+
q
(
p3+ p2q+ 2 p2r+ pr2+ 3 pqr + r3+ r2q+q2r

)
λ2n

λ (p+ r) (p+ q)
,

(30)

which is the same formula as derived in [15].
Similarly, for q = r, we obtain

Ψf−n(1)(p, q, q) = q
(
λq2 + q3

) λ2n−2
p+ q

+ λn−2
(
λq2 + q3

) pqn

p+ q

+
(
λpq + q3 + pq2

)
λ2n−2 + λn−2q3 (λn − qn)

×λ
n−2q5 (λn − qn)

(p+ q)2
+
λn−2pq3

p+ q
nqn + λn−2qn+1pq .

(31)

After simplification and reordering of terms, this yields

Ψf−n(1)(p, q, q) =
pq3 (n+1) (qλ)n

λ2 (q + p)
+
q2
(
2 p3+ 4 p2q + pq2 − 2 q3

)
(qλ)n

(q + p)2 λ2

+

(
p3 + 3 p2q + 4 pq2 + 3 q3

)
qλ2n

λ (q + p)2
, (32)

which, again, agrees with the result “guessed” in [15] using finite state ma-
chines.

5. Preimages of 2 and their density polynomials

From the definition of the rule, we know that a site can be in state 2
only if it was in that state at the beginning, that is, sites in state 0 or 1
cannot change to 2. Moreover, f(2, 2, 0) = 0, f(2, 2, 1) = 1, and in all other
cases f(a1, 2, a3) = 2. This means that a site in state 2 remains in that state
forever if it is preceded by 0 or 1. Therefore, any string of the form

b = ? ? . . . ?︸ ︷︷ ︸
n−1

02 ? ? . . . ?︸ ︷︷ ︸
n

or b = ? ? . . . ?︸ ︷︷ ︸
n−1

12 ? ? . . . ?︸ ︷︷ ︸
n

will be an n-step preimage of 2, fn(b) = 2.
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What if 2 is preceded by 2? In this case, it must be followed by a sufficient
number of 2s before the first 0 or 1 appears, as any 0 or 1 at the end of a
cluster of 2s shortens such cluster by one on each iteration. Therefore, for
n iterations, we need n 2s. We thus need, in order for fn(b) = 2 to hold in
this case,

b = ? ? . . . ?︸ ︷︷ ︸
n−1

222n .

The above observations can be summarized as follows.

Proposition 5.1 Block b belongs to f−n(2) if and only if it is one of the
following three types:

1. b = ? ? . . . ?︸ ︷︷ ︸
n−1

02 ? ? . . . ?︸ ︷︷ ︸
n

,

2. b = ? ? . . . ?︸ ︷︷ ︸
n−1

12 ? ? . . . ?︸ ︷︷ ︸
n

,

3. b = ? ? . . . ?︸ ︷︷ ︸
n−1

2n+2 .

This yields the density polynomial

Ψf−n(2)(p, q, r) = (p+ q)rλ2n−1 + λn−1rn+2 . (33)

6. Preimages of 0 and their density polynomials

Since everything what is not a preimage of 1 or 2 must be a preimage of 0,
we have

Ψf−n(0)(p, q, r) = λ2n+1 − Ψf−n(1)(p, q, r)− Ψf−n(2)(p, q, r) . (34)

After simplification, this yields, for r 6= q,

Ψf−n(0)(p, q, r) =

(
−pr + pq + q2

)
pq2 (qλ)n

λ2 (p+ r) (r − q)

+
pr
(
−r2p+ q2p+ q3 − r3 − qr2

)
(rλ)n

λ2 (p+ q) (r − q)

+

(
p3 + 2 p2q + 2 p2r + 2 r2p+ 3 qpr + 2 q2p+ r3 + 2 qr2 + q3 + q2r

)
pλ2n

(p+ q) (p+ r)λ
,

(35)
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and for r = q,

Ψf−n(0)(p, q, q) =

(
p3 + 4 p2q + 7 q2p+ 5 q3

)
pλ2n

λ (p+ q)2
− pq3 (n+ 1) (qλ)n

λ2 (p+ q)

−
q2p

(
3 p2 + 8 pq + 6 q2

)
(qλ)n

(p+ q)2 λ2
. (36)

Again, similarly as in the density polynomial for 1, the linear-exponential
dependence of the form (n+ 1)(qλ)n is present in the second term.

7. Density of ones

As already stated, density polynomials Ψf−n(k)(p, q, r) represent proba-
bility of occurrence of k after n iterations starting from a Bernoulli distri-
bution with probabilities of 0, 1 and 2 equal to, respectively, p, q, and r,
where p + q + r = 1. If one starts with a symmetric Bernoulli distribution
where r = q, the probability of occurrence of 1 after n steps, to be denoted
by Pn(1), will be given by Eq. (32) as long as one substitutes r = q and
q = (1− p)/2. This yields, after simplification,

Pn(1) = P∞(1)− (An+B)

(
1− p
2

)n

, (37)

where

A =
(p− 1)2

4 (1 + p)2
(
p3 − p

)
, (38)

B =
(p− 1)2

4 (1 + p)2
(
−p3 − 5 p− 3 p2 + 1

)
, (39)

P∞(1) =
(1− p)

(
p3 + 5 p2 − p+ 3

)
4 (1 + p)2

. (40)

One can see that for 0 < p < 1, Pn(1) tends to P∞(1) as n→∞, and that
the convergence is linear-exponential in n. Such “degenerate” convergence
takes place for probability of occurrence of 0 as well, as seen in Eq. (36).

On the other hand, when r 6= q in the initial Bernoulli distribution, the
convergence is purely exponential, as in Eqs. (30) and (35).

8. Conclusions

We presented an example of a 3-state rule exhibiting, under certain
conditions, linear-exponential convergence to the steady state. This phe-
nomenon is remarkably similar to degenerate hyperbolicity in finite dimen-
sional dynamical systems. It is not clear, however, what is the origin of this
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analogy. One can speculate that “simple” CA rules, such as those which are
equicontinuous or almost equicontinuous, can be somewhat approximated
by finite-dimensional systems. Local structure theory could possibly be ap-
plicable in this case, as it allows to construct finite-dimensional systems
approximating orbits of Bernoulli measure under the action of a given CA.
It is hoped that this contribution inspires further research on this subject.
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