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The fixed u continuous moment sum rules for meson-nucleon scattering were derived

and applied to the analysis of Kp scattering amplitude. It was found that sum rules are compatible
with the hypothesis of A,—A, exchange-degenerate trajectory dominance.

1. Introduction

Much effort has recently been devoted to the exploration of the Finite Energy Sum
Rules (FESR) [1], i.e. the superconvergence relations for scattering amplitudes with sub-

tracted asymptotic part of the Regge type. These sum rules, which are typically of the
following form:

N
+a+1
f i Im F(y, f)dv = 21,3;"\1;7:1 )
—N B t

connect the Regge pole parameters 8, «; with the low energy part of the scattering ampli-
tudes and in this way they play a useful role as the consistency conditions imposed on those
parameters.

In the case of meson-nucleon scattering the FESR (1.1) have been used most extensi-
vely for the study of meson Regge pole parameters [1], which control the asymptotic be-
haviour of the scattering amplitudes at fixed momentum transfer ¢. It was realized, howe-
ver, that FESR may also be applicable in the fixed u case, when the respective fermion
Regge poles determine the asymptotic behaviour of scattering amplitudes. One obtains

* Address: Instytut Fizyki UJ, Krakéw, Reymonta 4, Polska.
** Address: Instytut Fizyki Jadrowej, Krakéw, Radzikowskiego, Polska.

17



18

in this case the following fixed u finite energy sum rules [2]:

N
4; f o [Im Au(s, u) +(/a— M) Im Bu(s, u)]ds
N
28; Neitn+k
-y 2 e Je (1) (12)

which connect the respective fermion Regge pole parameters with signature 7; with the
average over the ¢-channel (negative s) and s channel absorptive parts of scattering ampli-
tudes.

One of the interesting problems which should be confronted with these sum rules for
KN scattering is the problem of A,— A, exchange degeneracy. It has recently been pro-
posed that the strange baryon resonances which couple predominantly to the KN channel
such as A, (even signature) and A, (odd signature) recurrences should be exchange-dege-
nerate due to the small “‘exchange forces” which come, in this case, from the KN channel
[3]. This means that the respective resonances with alternating signature should lie on the
same Regge trajectory and should couple to the KN channel through the same residuum
function. In the language of sum rules (1.2), this means that the even and odd moment
sum rules should be compatible with the same trajectory and residuum function on the
r.h.s. of (1.2).

In studying the fixed v sum rules we need the ¢-channel imaginary part of the scat-
tering amplitudes which is usually approximated by the respective meson exchange con-
tributions. The only contributions which may be in practice estimated are the vector meson
(¢ and w) contributions where the respective coupling constants may be deduced from
universality, vector meson dominance etc. In the case of KNV scattering amplitudes we
can also take advantage of the fact that (K*NN), amplitudes are superconvergent at fixed u
and consider amplitudes which are pure € == —1 in the ¢-channel rather than amplitudes
with fixed u-channel quantum numbers. In the former case the approximation of the ¢-channel
contribution by g and @ is of course more reliable than in the latter. Nevertheless, it is
doubtful whether this approximation is of any use for higher moment sum rules which
are needed if we wish to confront the even and odd signature Regge pole parameters,

The purpose of this paper is to generalize the fixed u integer moment sum rules (1.2)
into the continuous moment ones (CMSR) appropriate to the fixed u case and to apply
them to the KN scattering amplitude in order to see whether the 4,— A, exchange degene-
racy is compatible with them. The CMSR which we derive, are the FESR for the auxiliary
amplitudes being the product of the genuine scattering amplitudes (4, and B,) and the
simple analytic function of the variable s which has the right hand cut singularity only. At
this point our sum rules differ from fixed ¢ CMSR, where owing to the crossing symmetry,
the left and right hand cuts are treated symmetrically [4]. The sum rules which are obtained
in the fixed u case have the following form (formula (2.8) of the Section 2):

5

1
yrcy f Im G(s, u; A)ds
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5

= f {Im [(So— ) Auls, W]+ (/i M) Tm [(sg— 9)*- Buls, w)]}ds
26,5
2 ﬁ,(}/z?) sin 7A .. cos rA+a) | - "
*?Z oi(}/w) + 2+, [.,1.~ cosma; ' cosna ] (msotrec (1.3)

where 4 is a continuous parameter, The auxiliary function G is chosen in such a way that
the real parts of the scattering amplitudes 4 and B appear for s > s,, where they may be
constructed whenever phase shift analysis is available. On the other hand, in the t-channel
contributions there appear still only imaginary parts, and they may be subsequently aproxi-
mated by the vector-meson contributions. The pleasant feature of the CMSR (1.3) is the
simple form of their r.h.s. in the case of single exchange-degenerate trajectory dominance

. 4-}3(}/17) _,_ sinmd g At ‘
r.h.s, = m [ 1 M] (S 30)l+ +Y. (14')

Thus the CMSR offer the possibility of testing the exchange-degeneracy hypothesis using
lower moment sum rules where the approximation of the t-channel contributions through
¢ and w may still be reliable.

The presentation of the paper is as follows. In Section 2 the CMSR (1.3) are derived.
In Section 3 we analyse them in the case of the KV scattering amplitude, taking the T g, —
— T k-p), 2mplitude in the analysis. This amplitude is pure € = —1 in the ¢-channel and
is believed [16, 17] to be dominated by the single A,— A, exchange-degenerate trajectory.
We also compare our sum rule results with the r.h.s. of Eq. (1.3) where the appropriate
Regge pole parameters are put in the form deduced from high energy fits of backward
K+p scattering. Finally in Section 4 a brief summary of results is given.

2. Fixed u continuous sum rules for meson-nucleon scattering

In this section we derive CMSR appropriate for the analysis of fermion Regge pole
parameters.

Let us introduce the respective u-channel invariant amplitudes 4,, B,. The asymptotic
behaviour of these amplitudes as the functions of s for a fixed value of u is controlled by
the u-channel fermion Regge poles [5] which contribute in the following way to the asympto-
tic part of the amplitudes 4, and B, [2, 5]:

FES(Vi ) = e 14254 (Vi D)BES) = B
7 = cos azoz,-([/u)
2.1)
where «; and B; denote the trajectory and residuum functions respectively of the given
Regge poles with signature 7; and 7,P = —1. Regge pole parameters with signature 7;

and 7, =1 are related to those with 7,2 = —1 through MacDowell symmetry [5]:
“-tP-*—-—l(V;l’) = a1P=—1("—Va)
ﬁtP=1(VE) = —/3:1’=—1(_V[4) (2-2)
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If the asymptotic formula (2.1) is combined with the fixed u dispersion relations for the

amplitude fl(s, ]/ u):
1 Im A4, u) -+ ]/ u~M)Im B u
Sils, Vu)y = 82 [ () 4 ) ¢, )

7 — (s, u) +

Lo

1 fIm Ay, u)+( V'—M) Im By(s', u)
t e
S —S
0

one obtains the familiar fixed u Finite Energy Sum Rules [2]

N
7-415— f [ Au(s', 0) +(/a—M) Im B(s, u))s'ds’
— Nzi(Vu)+n+Vz
_2% g (= 1) 2.3
Zﬂ(V T el 23)

which have been discussed for N [2] and for KN {6] scattering. We now generalize the
integer moment sum rules (2.3) into the continuous moment ones. With this aim let us
introduce an auxiliary function G (s, u; 4) which is defined as

G(s, u3 &) = (so—9)1(s, u)
so 2 (M+p)? (2.4)
where (M+u)? is the elastic threshold in the s-channel. Let us assume for convenience

that the asymptotic behaviour of the amplitude fi(s, ) is given by the following expres-
sion

AS — Z ,Bi (S_so)ﬂi—‘/z_*.-[‘.(so_.s)di—l/z . (25)

COSs TT;

(This formula is equivalent to (2.1) up to the leading powers in s.) From (2.4) and (2.5)
we obtain the following expression for the asymptotic part of the function G {s, u; 3)

64305, u3 3) = (sq—)t 3, Lm0 REH] 26)

COS w&;

Let us now consider an integral along the contour as in Fig. 1. From the Cauchy theorem
we obtain:

f G(s'+ig, u; Ads = — f G(s, u; Ayds
25,—5 SC

1 (5—sq) %A+ %

~ AS(s. u: = > '
~ ‘[ GAS(s, u; A)ds Z it A+, CcOSs TT; pix
SC '

X {(e—it— e=inla+ %)) 4 gy(e—in(t+a-%) 1)} 2.7

where SC denotes the semicircle.
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Taking the imaginary part on both sides of Eq. (2.7) we obtain finally the following iden-
tity:

= f {m{(sg— sV Auls, w)]+ (VM) Im [(s9— )" Buls, u)]}ds
2:,—?

Se

~

— “4%72 j (so—5)* [T Au(s, ) +(/u— M) Im B, (s, w)}ds+

28,3

+- -4;—2 f (s—so)*cos wA[Im Ay(s, u) +(/u— M) Im B,(s, u)] —

— sin wA[Re Ay(s, u) 4 (Ju— M) Re B,(s, u)]}ds
= '-72; Z {ﬁi(V;) [— p_ Sinxd + 52 :rz(}.+oz;)] X (3_s°).‘+“%} (2.8)

cos o cOS TTa; a;+A+Y,

which is our fixed u CMSR with the continuous parameter 4. Let us now discuss some
features of the sum rules (2.8). It is seen from (2.8) that, apart from the t-channel and
s-channel imaginary parts of the scattering amplitudes 4 and B, their real parts are also
needed in general. Due to the fact that the function (so—s)?* which multiplies the genuine
scattering amplitudes 4 and B, carries only the right hand cut singularity a knowledge
of these real parts is required for s > s, only. Thus, in the t-channel contributions only
imaginary parts appear and they may be subsequently approximated by the respective
meson-exchange contributions.

Since the real parts of scattering amplitudes are required for s lying in the physical
region of the s-channel, we may use a partial wave expansion and obtain the real parts when-
ever the corresponding phase-shift analysis is available. (The same, of course, refers to
the imaginary parts of scattering amplitudes in the physical region of the s-channel.) We
should bear in mind, however, that since we use scattering amplitudes at fixed u (u < 0)
this means that we need, in general, to go to the unphysical region of the s-channel
|cos B(s, u)|>1, where the use of truncated partial wave series may be wrong, especially
for real parts of scattering amplitudes. The region of s-variable, where the use of trun-
cated partial wave expansion of real parts of scattering amplitudes (at fixed u < 0) would
be most questionable is the low energy region, just above the s-channel threshold. In this
region and for u < 0 the real parts of scattering amplitudes are strongly affected by the
nearby t-channel contributions and it is rather doubtful whether the truncated partial
wave series would be correctin this case. The situation is far more favourable for imaginary
parts, since the contributions of higher waves, in this case, are strongly suppressed owing
to unitarity. Thus, in practical applications of sum rules (2.8) it is safer to push the
value s, somewhere above the s-channel elastic threshold in order to avoid the need of real
parts very near the threshold. An unpleasant feature of the sum rules (2.8) is the rather
complicated structure of their right hand side if several Regge poles contribute without
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any correlation between their parameters. This involved structure is also the consequence
of the analytic properties of the function (sq— s)%, which multiplies the genuine scattering
amplitudes 4 and B. The r.h.s. can, of course, be simplified if we use the “crossing symme-
tric”” function of the type (s3—s%* in the definition of the auxiliary amplitude G(su; A)
(as in the fixed ¢ case) but the resulting CMSR are not suitable in the fixed u case, since
they require in general a knowledge of the real parts in the ¢-channel.

Thus we expect our sum rules (2.8) to be useful only in those cases when a single
Regge pole is believed to dominate. In the case of single, exchange degenerate trajectory

oz,=1(‘/ﬁ) =Qp_q =0, ,3,=+1(]/ﬁ) = ﬂ,=_1(1/ﬁ) == B the r.h.s. of our sum rules reduces
to the following simple form:

) sinad |
r.hs. = m [—1 — PR :| (S'—SO) TA+1 .

Therefore we expect that sum rules (2.8) will be very useful in this case and, in particular,
they offer the possibility of testing the exchange-degeneracy hypothesis with the use of rather
low moment sum rules 4 <1 where the approximation of the ¢-channel contributions
by the nearby meson-exchange contributions may be still reliable.

3. Analysis of fixed u CMSR for Kp scattering

In the preceding section we derived the fixed © CMSR and in this section we apply
them to the analysis of Kp scattering amplitude at fixed u.

It has recently been suggested [3] that, owing to the absence of resonances in the KN
channel (i.e. owing to the absence of the significant exchange forces, from the point of
view of the KN channel), the strange baryon resonances which couple predominantly to
the KN system should be exchange degenerate, i.e. the resonances with alternating signa-
ture should be described by the same Regge trajectory and should couple to KN channel
through the same residuum function. The best candidate for these exchange degenerate
Regge recurrences are the A4, (1/2+, 5/2+...) and 4, (3/2~, 7/2-...) recurrences which couple
predominantly to the KNV channel and the fact that they are described by a single Regge-
;trajectory is impressively confirmed by the corresponding Chew-Frautschi plot [3].

In order to test this 4,— A, exchange degeneracy hypothesis using the FESR technique,
we should consider the KN scattering amplitudes with the fixed z-channel quantum num-
bers I, = Y, = 0. This means, however, that in the t-channel imaginary part we need
the € = +1 contributions (like Ay, fy, S¢ etc. contributions in the meson-exchange appro-
ximation).

As we remarked in the Introduction, in the case of KN scattering sum rules we can
eliminate these contributions, taking advantage of the fact that the (KNN), amplitudes are
superconvergent at fixed u and consider only those amplitudes which are pure € = —1
in the t-channel. The fixed u superconvergence relations might be questionable if the cuts
in the complex j-plane generated, for instance, by the simultaneus exchange of K* and N
Regge poles were important. The absence of the backward peaks for high energy KN [7]
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scattering suggests that they are probably quite unimportant. Thus in the sum rules we
might consider the following amplitude:

T _ 2(TK-P—- TK+p) - (TK—n_ TK+n)

which is pure € = —1 in the t-channel and is still dominated asymptotically by the
Y = I = 0 Regge poles which couple to the KN channel. This amplitude, though it is pure
C = —1 in the ¢-channel, is still not very suitable for CMSR analysis owing to the incom-

plete information about the s-channel K*n amplitude.
Thus in what follows we consider the following combination of s-channel scattering
amplitudes:

Ty = Txrpy— Ty 3.0)

which is still believed to be dominated by the A type Regge poles; since I = 1 trajectories
couple rather weakly to the KN channel.

This may be seen by comparing, for instance, the AKN and KN coupling constants
[8]. The weak coupling of those trajectories at u = 0 is also supported by the analysis
of fixed u integer moment sum rules for KN scattering [6]. If the single exchange
-degenerate A,— /A, Regge trajectory dominates in the asymptotic behaviour of the ampli-
tude (3.1), then we obtain the following CMSR for the corresponding f{l(l/ﬁ, s) amplitudes
(see Eq. (2.8) and (2.9) of the preceding section):

1 . —
o f Im{(sy—5)*A%(s, u)}ds + (M— V) f Im [(sg—5)*Bals, u)]ds
25,—5 2g,—5
—__a [1 4 Sz ](sn—s)wm. (3.2)
JTCOSTTAY COs T4

If we assume that the &, trajectory is an even function of Vﬁ and if we decompose
the residuum function f()/u) as below

—ﬂA(W) = G‘A(u)'—VEbA(u) (3.3)
we obtain the following sum rules for a,(u) and b ()

§

1
) f Im {(sq—s)*A (s, u) +MB (s, u)]ds
2:,,—;
4 axu) sin wwA Y
T matYy+a [1 cos & ] (s=s0) (3.4a)
1
ey f Im {(sq— s}*Ba(s, u)}ds
2sy—3
_ 4 ba(y) sin@d | - Lary
T omatAtl, [1 tos nfx] (=59 (3.4b)
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(Note that since our amplitudes are defined in the s-channel we have changed the sign
of the B amplitude in the sum rules (3.4), (3.4b) as compared with the sumrules (2.8)
where the corresponding amplitudes have been defined in the u-channel.) We now list the
various contributions which have been included in the evaluation of the sum rule integrals

on the left hand side of (3.4).

A. The t-channel contributions
They are approximated by the g and @ which contribute in the following way to our
sum rules [2]:

- ’Eli' f Im {A%(s, u) (sq—5)0ds = — Eﬁ’%‘i@ﬂ#ex
X Z(W+A42§]24—m_2” X {so— 2(M?+ ME) + M+ u}?
- e PR a0 204 MR+ ME-+
- 71;:? f Im {Bis(s, u)(sq—s)*}ds = é.’iii‘?_m‘—’ (1+2p,)(so— 2(M2+ ME) + M3 +u)t

t

o EoKRENN (1.4 9p1e) (50— 2(M?+ M) + ME+u)?

where M is the nucleon mass, M, denotes the mass of particle i, We have put the
following values for the respective parameters [9]

1
BeKRENN = 3 BoKRCaNN = ﬁ = 2.5.

(This correspond to the p width I" = 125 MeV)
M, =185
e = 0.05

as suggested by universality and vector-meson dominance of electromagnetic form-factors [9].

B. The s-channel contributions of K p amplitude

This part of the left hand side contains the following contributions:

i. The X and A poles which have been estimated for two different sets of g% and g%
coupling constants

g_ﬁ = 5.7 5_3‘-" = 1.7
47 4or

(Zovko values [10])

2
Bi_ 135 8% _ 03
. .

(Kim values [11])

(For a review of the present state of knowledge about these coupling constants see Ref. [8].)
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ii. Integral over the unphysical region of the K p amplitude (M ,+m,)? <s < (M, +
+m)? which has been approximated by the Yy(1385) pole with the Frye-Warnock [12}
coupling constant gys/4w = 1.9/M2 and by the s-waves in the scattering length approxima-
tion with the following values for the scattering lengths a; [13]

ag = (—1.67+:0.72) fm
a; = (—0.003+:.0.69) fm.

iii. Integral over the low energy region (M,+Mg)? S s S sp=2.49GeV? which
has been evaluated by using the SL approximation for s-waves and by including resonances.
in higher waves.

iv. The integral over the region sy < s $ 4.07 GeV? which has been evaluated using
the resonance + background parametrization of Armenteros et al. [14].

v. The integral over the region 4.07 < s < 5.07 GeV?2 which has been approximated
by retaining the resonant partial waves onlyl.

b Ims

SC

0 3 3 Res

Fig. 1. Contour of integration

C. The s-channel contributions of the K+p amplitude have been estimated using:
the most recent K*p phase shift analysis [15] which covers the whole energy range (M+
+My)2 <s 5507 GeV2

The resonant partial waves in the K p amplitudes have been parametrized in the same
way as in Ref. [14], namely by the Breit-Wigner form with the energy-dependent widths..

1 We have continued the resonance + background parametriation of K p scattering amplitude up to-
5§ = 4.07 GeV2 (py,p, ~ 1.5 GeV/c) despite the fact that it has only been done up to pjgp, = 1.20 GeV/ec [14]. It
has been argued in Ref. [4] (Dass, Michael) that this parametrization may be applicable up to py,p, = 1.5 GeVJe.
At any rate we have found that the nonresonant background of K p amplitude gives small contributions to,.
our sum rules and that the dominant contributions from the s-channel physical region of this amplitude come
from its resonant part.

We have extended our sum rule integrals over X p amplitudes up to s = 5.07 GeV2 (pyp, = 2 GeV/c),.
retaining the resonant partial waves only in order to treat more carefully the A (2100) contribution, which is-
not fully taken into account with the integrals cut off at s 2 4 GeV2.
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Fig. 2. The sum rule results for the B amplitude plotted as the functions of u for different values of the para-

meter A. Upper and lower points correspond to the Zovko and Kim coupling constants respectively. The con-

tinuous curve is the r.h.s. of Eq. (3.4) with the A,—4, trajectory parameters taken from Ref. [17] (see also
formulas (3.6), (3.7))

GeV Gevh GeV

1
A=0 % A=0.2 A=0.4
[ - =05, o -05

L iy Lo—— g
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LU L L L l|£‘il T 1T
-
3

A=08 A=1

S t - (1T - -
%Lﬁ/ ulGevic)® T ﬂ uGevrc)?

Fig. 3. The sum rule results for the A+ MB amplitude plotted as the functions of u for different values of the
parameter A. Upper and lower points correspond to the Zovko and Kim coupling constants respectively. The
centinuous curve is the r.h.s. of Eq. (3.4) with the A,—A, parameters taken from Ref. [17]
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We have included the following resonances in our sum rules:
A(1520), A(1690), A(1815), A(1830), A(2100)
2(1770), X(1910), 2(2030)

with their parameters taken from the most recent Rosenfeld table. (They do not differ
appreciably from those cited in Ref. [14].) The parameter sy, which appears in the sum
rules (3.4a,b), has been put as s, = 2.49 GeV? whether the upper limit of integration
s is equal s = 5.07 GeV2. The reason for putting s, somewhere above the elastic threshold
was discussed in the preceding section. Our sum rule results (the left hand sides of Eqgs
(3.4a) and (3.4b)) are plotted in Figs 2 and 3 as the functions of u for several values of

s}
i
GeV“A*mB u=0 T+ u=0
sk s
- azaz:oigs(mr 17 A 0204 dsaaf T
sl Sf

Fig. 4. The sum rule results for B and 4-MB amplitudes for u = 0

the parameters 4, and in Fig. 4 as functions of A, for u = 0. We see that the sum rules are
quite sensitive to the adopted values of o2z /47 coupling constants, as is usual in the case
of KN sum rules, thus only qualitative predictions may be extracted from them. Thus we
should like to point out that the sum rule results for both amplitudes change sign for cer-
tain —ug(4) which has a tendency to shift to theleft as Aincreases. We tentatively interpret

in A
2 in the r.h.s. of Eqs (3.

this fact as being the rough reflection of the factor 1+
COS T

4a, 4b) which is an immediate consequence of A,— A, exchange-degeneracy. In order
to see to what extent the sum rules are compatible with the r.h.s., we plot in the same figures
the functions

aq(v)

(s—sg)tHth [1 sin 74 ]

a+ A+, cos e



28

(s—sp)aTit [ sin A
ba(u) a+A+1y 1+ cos ma (3.5)

with the following parametrization for the residuum function

—Ba = (a+o)(x+3]2)Bo(u) ( - -l/i)(l - Al/fy ) (3.6)

which, for A,— A,, has been suggested in Ref. [16]. (The factors (1 — —]\l{.fj‘) and (1— V;I/MY)
4

are responsible for the absence of 1/2- and 3/2* MacDowell partners of the 4 and 4,. (Note
that, according to Eq. (2.1), the ﬁ(ﬁ) is the residuum of A;—4, tra]ectory)

In plotting the r.h.s. we use the following parametriation of the f4(x), which has been
obtained from the recent fit of backward K+p scattering [17]:

Be = 6.39 GeV—1exp (0.5078 u)
o 4(u) = ~0.7+1.116 u. 3.7

We see that our sum rules are in general agreement with the r.h.s. of the exchange-dege-
nerate type, at least at the following qualitative points:
1. The CMSR results are, in general, small near those values of uy(1) whenever the

sin ni.)

Co3TX

2. They predict the same relative sign of a4, and b, as appears in the parametriza-
tion (3.6).

3. They agree in order of magnitude with the r.h.s. which is computed using the 4,— 4,
trajectory parameters obtained from high energy fits of backward K*p scattering. In parti-
cular, the sum rules predict fairly substantial ]/Z dependence of the A residuum function,
this being in agreement with the parametrization (3.6).

Nevertheless, we have noticed that the agreement begins to deteriorate for higher
moment sum rules 4 2 1.2 (¢f. Fig. 4.) but it is almost certain that this is due to the omission
of distant ¢-channel contributions.

To sum up, we can say that though it is impossible to make definite quantitative predic-
tions from fixed u sum rules for KN scattering, owing to the uncertainties in the input
data and very crude estimation of the z-channel contributions, they are useful as consistency
conditions on Regge pole parameters. In the case of the discussed K*p scattering, they
are quite compatible with the single, 4,— A, exchange-degenerate trajectory dominance.

t.h.s. vanishes due to the factor ( 1+

4. Summary of results

We have developed a technique of fixed u continuous moment sum rules and applied
them subsequently to the K*p amplitude. We have found that sum rule results are compa-
tible with the A4,— A, exchange-degeneracy hypothesis and agree qualitatively with the
A,— A4, Regge pole parameters obtained from high energy fits of K*p backward scattering.



29

Nevertheless, owing to the crude estimation of the t-channel contributions, the fixed
u sum rules are less powerful than their fixed ¢ counterpart and may therefore be used only
as consistency conditions rather than as a source of quantitative information about the
respective fermion Regge pole parameters.

The authors are much indebted to Dr A. T. Lea for sending the numerical values of
the K*p phase shift parameters. They are also very grateful to Mr A. Golemo and Mr P.
Gizbert-Studnicki for help in numerical computations and interesting discussions.
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Note added in proof

After this work was completed we have been informed by Mr P. Gizbert-Studnicki and Mr A. Golemo
that the backward K¥p scattering may be also fitted assuming partial 4,— A, exchange degeneracy. The
respective fits and their comparison with our sum results are presented in the paper: P. Gizbert-Studnicki
and A. Golemo, Acta Phys. Polon., A37, 143 (1970).



