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Pairing forces connected with the R, group and quadrupole forces with the SU, group
were taken together to generate the common symmetry group. It has been proved that the re-
sulting group is the symplectic group in (N+1)(V+2) dimension, where IV is the major shell
number. The special case of Sp(6) for N =1 is discussed in detail.

1t is not the aim of the paper to give account for the great usefulness of the pairing--
-+ quadrupole scheme in nuclear theory. It is even difficult to mention all papers dealing
with the problem. Shortly speaking, the common one-particle shell-model potential is
unable to describe all particularities in the real interactions among nucleons in the nucleus.
Besides the one-particle potential we are dealing with the residual two-particle interactions
which we divide, in an artificial way, into two parts: a short range part and a long range
one. The approximation of short range forces is almost exactly the pairing forces which
couple the two-particle state to the overall J = 0. The long range forces are approximated
by the quadrupole forces which are the scalar product of two irreducible tensor operators
proportional to the ¥,

In principle we know how to deal with pairing or quadrupole alone. The application
of group theory is of great advantage in the treatment of these problems. The symmetry
group connected with the quadrupole forces is the well known SUj, group. The orthogonal
groups Ry, Ry, and R, are suitable to treat the particular problems of pairing forces. A word
has to be said about what we mean here by symmetry. Strictly speaking,a symmetry group
of particular interaction is the group of transformations which leaves the interaction in-
variant, But the modern application of group theory introduces also such transformations,
under which the Hamiltonian transforms in an established way. Usually one begins to study
the problem by dividing the Hamiltonian into several simpler parts which are taken as
generators of the group to be found. The next step is to construct the bases for the irredu-
cible representations.
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The work deals with the first problem i.e. with the search for the group of transforma-
tions which are generated by the operators of the pairing+quadrupole forces.

The first two sections repeat the known problem of pairing and quadrupole forces
taken separately but in a way suitable, for further application. The next section, deals with
the commutation relations of the operators taken from pairing +quadrupole interactions.
The search for the complete set of infinitesimal operators is the first part of the section,
and the identification of the group is the second one. The last part is devoted to the special
case of the general problem.

1. The pairing forces

The group theoretical approach to the pairing forces was firstly introduced by several
authors independly [1-8]. It was proved in the papers we mentioned that the operators of
pairing forces in L—.S coupling generate the R, group for one kind of nucleons and the
Rg group for both proton and neutron. In j—j coupling there are, accordingly, the groups
R; and R,.

We restrict the problem by the following assumptions:

1. We start with zero order shell-model structure of levels in L—.S coupling, i.e. with
one particle I levels.

2. We restrict the problem to, so-called, single closed shell nuclei, that is, we do not
assume the mixing of protons and neutrons. ‘

3. The residual interactions between the nucleons on the major shell (the harmonic
oscillator shell) are taken into account but not the interactions between the nucleons on
the different major shells. The last restriction is introduced not by pairing but by quadru-
pole forces, as will be seen later.

Under these assumptions the pairing interaction is conventionally written (see for
example [5]) as

Hy= — th;n,(—1)l""'”’”_m'a;"a,'*;mal._m,‘al,m = —GP.P- (1)
where

Pr= IZ (- 1)I—mal-:|-ntal*--m;
P-= IZ (= 1)) gy By @

4, ¥ denote the third component of the ordinary spin and G is the strenght of the pairing
forces taken as positive constant. The sums are taken over all I belonging to the major
shell of the harmonic oscillator.

The quasispin method begins with the recognition of the commutation relations

[Q+a EB—] = 2@0 (3)

where

1
DLy = 3 Z {G;nfalmt+alttlalm$— 1 )



and
[907$+]=$+ [Qovf—]’:'—f—- (5)

We can treat the operators P, P_, P, according to their commutation relations (3), (5),
as generators of infinitesimal transformations of the rotations in the abstract, so-called
quasispin space, in three dimensions. The whole formalism of the ordinary spin may be
immediately applied to the quasispin.

In particular, the square of the total quasispin will be connected with the $,P_ opera-
tors by the usual expression

P =P, P +Pi-Py (6)

With the help of the relation (6) we can diagonalize the Hamiltonian (1) in the base |P, P>
(4).

For more than one level, we have to add to the Hamiltonian (1) the single particle
energy and the Hamiltonian takes on the form

I+ —m-—m’ -
# = § s,(a;,a,m,+a,’fmalm) - Gbg: (—1iHtmmem aifmaltma'l'—mual'm'r (7)
.

The single particle Hamiltonian (7) is not diagonal in the base |P, $,> and we are faced
by a problem essentially equivalent to the problem of adding several spins (see [9, 10]), which
can also be exactly solved, using the method of angular momentum theory.

2. The quadrupole forces and the SU; group

The SU, group emerged in nuclear structure theory from the one particle potential
of the oscillator type [12]

H= o (p*+rd) ®

we adopt here, for simplicity, the system of units in which m =w =% = 1.
The group symmetry of this Hamiltonian is the well-known SU; group. The infinite-
simal operators of the SU,; group are taken in following form [12]

—V?: Z (19 1gsilg) “Zaqg =L, ®
2192
V6 > (191 1g,(29) aja, = Q, (10)
19
where
“= 5P ge=-101 an

o™ and « operators have the well-defined property of creating and anihilating the oscillator
quanta. L, are the angular momentum operators in *‘spherical” coordinates and

4
=1/ * Vsl 9P ¥2s 0, 2 az)
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The operators Q, are like the quadrupole operators both in coordinate and momentum
space. The commutation relations between them are

[Lq’ Lq'] = - Vé (1919’119+q') Lq+q'
[Qp L) = —)/6(291q' 12 +¢") Q. o (13)

[Qp Op1 = 3)/10(2024' g +4) Ly -
Following Elliott [12, 13, 14] we denote the LR. (irreducible representation) of the
SU, group by two numbers (4, u). The one-particle functions of the harmonic oscillator
well (8), degenerated in energy, form the basis for the special I.R.s of the SU; group, namely

the representation (4, 0) where 4 =0, 1, 2... denote also the number of the major shell
of harmonic oscillator. The dimension of the (4, u) basis

d= 5 (4] (D) A +ut]) (14)

is shortened for (4, 0) representations to the form

d = —é—(l—kl«) (A+2)

that is exactly the number of degenerated one-particle states on the 4 = N level (without
spin degeneracy). In general, one needs three further quantum numbers to distinguish
the function in the given I.R. However, for the (4, 0) representations, two number are
enough to denote the functions. These are L and L, — the quantum numbers of orbital
angular momentum. The Kronecker products of two L.R.s of SU; are given by Elliott [12]
for the more useful representations.

Now we turn our attention to the quadrupole interaction, which we write, by defini-
tion, as

167 - .

Q' =)0y  QF="03 (— D) Yoo (). 1)
i>j q

We can consider the Qs‘as a quadrupole term of the general two-particleinteraction V{|r,— )

with the separable radial part of the form

v(r;, rj) = r?r]?. (16)

We select, from (15), five one particle quadrupole operators of the form

16
%=1/ 5 r*Ya (17)

which we write in the second quantization
2, = > Qv et a, (18)

where » stands for (Nlmm_) and the summation is extended over the complete set of har-
monic oscillator functions. The interaction (15) is now

2= (-1)2,2_,. (19)
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The table of commutators for the Sp(6) group
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The next step the decisive one, was made first by Elliott. We restrict the interaction (19)
to the particles on the major shell of harmonic oscillator only, which means that we restrict
the summation over only (Imm,) within a given shell N. The calculation of the matrix ele-
ments in (13) gives

I0+1) @+ ]
20 Do [ e

4 [6(l+1) (+2) (N=1) (N+1+3)

3
] (U9, 1+2) + UP(1+2, l)]}

20+3
= ;} {C; UL D+ CUEE 1+2) + UP1+2, D]} (20)

where, in general
v 1) = Vz‘l%ﬁ Y (mglim) it (21)

Commutators between the defined Q, operators give three new operators, viz.

P, = J{A+1) @L+)FUDY, 1) (22)

which are identified as angular momentum operators. In such a way we are led once more
to the SU; group generated now by the eight operators (20) and (22). The commutation
relations between these operators are the same as in (13). The commutators are obtained
with the help of the relation

[Uq(‘)(l, ", Uig‘)(k, k) = D} (2r+1)¥(tq splrv)x

X {(— 1) 578, Wts Ik rl') U, K'Y — 8, W(tsl'k; rk') US(E, 1). (23)

The SU, group of the harmonic oscillator Hamiltonian and SU; group of quadrupole inter-
action are the same group [15, 12]. The proof of this is based on the fact that the operators
taken from (12)

1
5 P Vay(Brs @) +0*Y2ul O )} (24)

have the same matrix elements between the states of the same major oscillator shell, as
the operators

r2Y, (4, ¢,)- (25)

It is not, however, true if we take these operators between the states of different shells:
the operator (24) vanishes while the (25) does not. It means that the SU, symmetry is con-
nected with the quadrupole interaction only on the boundary condition restricting the
interaction between the particles on the same major shell of harmonic oscillator. The
Hamiltonian with the harmonic oscillator well on the one hand and the quadrupole inter-
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action on the other are, however, different in respect to the transformations of the same
SUj; group. The first is scalar while the second is the tensor operator of the second rank.
Nevertheless, the well-known simple character of quadrupole interaction under the SU,
group was widely exploited in nuclear structure theory. This is the reason for searching
for the common symmetry group for pairing+quadrupole forces.

3. The pairing+quadrupole forces — the group Sp{(N+1) (N+2)}

The Hamiltonian consists now of three parts (1), (8) and (19)
H = Hy+ak,+p2? (26)

where & and f§ are the relative strength parameters. , is the one particle Hamiltonian of
the harmonic oscillator which in the second quantization takes on the shape

3
Hy= (N+ 5) Z Uiy @7)

Imm r)

that is essentially equivalent to the P° quasisipn operator (4). The orthogonal group R,
is connected with three pairing operators and the SU; group — with five quadrupole opera-
tors. If these two sets of operators commute, the symmetry group would be the simple
product of RyX.SU,. But it is not the case and we have to commute the operators until
reaching the closed set of them that can be attached to the symmetry group. The group
to be found has to have the Ry and SU; as subgroups.

The operators which have to be commuted are taken from (2) and (4) (P operators)
and from (20) and (22) (2 and % operators).

The first step is to calculate twenty-four commutators between three pairing operators
and eight SU; operators. Nine commutators which can be symbolically wrilten as

[Z,P] =0 (28)

are equel to zeros because the pairing operators are scalars in the angular momentum space.
Five further commutators are, by calculation, also equal to zeros; they are

[Qq,fo] =0 ¢=2,1,0,-1, —-2. (29)
We are left with the rest
(2,2 =B [2,2]=4, (30)

which, after straightforward calculation, gives

B = {Cl(l)A;“(z)(l, l)+2C2(l)A;(2)(l, 1+2)} (3YH
1

B, = D AC (AR, 1) +2C, () AP, 1+2)}
{



where

N oy ,
A7) = e N (SN Umtqllm) (@i aiici ) (32)
mm’

Ag‘) is the hermitian conjugate of A;H'), and C; are the same as in the relation (20),

In such a way the first step of commutation has introduced ten new operators %}, #
with ¢ = 2, 1,0, —1, —2 which, however, are built in the same way from A"Hz) and A(z)
operators as the 2, were from the U; ) Note that

A9, 142) = (=149 +2, ). (33)

The second step is to commute the ten new operators with themselves and with eleven
P, ¥ and 2 operators to obtain 155 commutators. Thirty of them give zeros:

(#8524 =B, 2-] = [#", B*] =[5, B] = 0. (34
Fifty of them give the operators already introduced:
(B}, 2,1 = — V62419120 +9) B, (35)
(2, 2,1 = — /6(291¢'[29+9") B,,,
(8].2)=[2,P:] =22, (36)

(B, Pol = — B [Bp Dol = %
Unfortunately, seventy-five remaining commutators of the type
(2, #),[2, #*] and [#*, #]

give new operators. For the sake of exactness we write down the results of the second step
of calculations.

(B, B, = —4 Z [/2r+1 (2924 |rv) x
S {C) W@21L; rl) + C3(1— 2) W(2211; rl—2) + CA(1) W(2211; rl+2)] UL, 1) +
GOy L +2) W (2214215 rl+2) + Cy() W (22U +2; )] [UDA+2, ) + UD(, L+2)] +
+C(HC, (1+2)W (22l+4l' A+2[UDI+4, )+ U, I+D)3+
~—( 1), o Z {C3()+2C3()}, (37)
[0y B7] =2 E 2r+1(2q2¢'|rv) X
X ALCH) W (2211 rl) + CH1—2) W (2211; rl—2) + CHD W (221L; rl4+-2)]4; (1, 1) +
(= 1)1C(0) [CLL+2) W (2214215 rl+2) + C() W (22114+2;5 1D)] A1, 1+2) +

+ [+ (=171CD) C(1+2)W (2214415 rl+2) 47O, 1+4); (38)

the summation over r is extended for 0,1, 2, 3, 4.
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‘The commutators
{2, 2,] (39)

have exactly the shape of (38) with the change 4*— 4. The main part of calculations leading
to the results given above was obtaining the commutators between the U and A. Using
the standard method we get

(0O 1), 4Ok, K)) = 35 Y2r+1 (tgsplm) (— 1) (40)

X {(—1)8,, W(tslk's rl’y AF0(1, k Yot Oy W (eslles rl') AL, )Y,

(U9 1), 43Ok, E)]) = 3 Y2r+1 (tqspim) X (41)
X (O W (esl'kes i) APk, V) + (= 1) H2 8, W (esUK 5 i) AL, )},
[AFO 1), APk, K)] = — Z 1/2r+1 (¢qsplrv) x
A= 1) Oy W (eslhs i) USL, ) +(— 18, W (esU'E' s YUS(Y, )+ (42)

4O W (el rl) D, K+ (= 1) 50, (tslh's i) U, K'Y} +
+2(2t+1)718,0, (— D(—1)"0,, 0,5+ OOy

The third and further steps of commutations, although possible with the help of general
formulas (23) and (40)—(42), are rather complicated and would lead to the linear combinations
of A+, A, U operators with different coefficients and with all possible ranks. The number
of all such linear independent combinations is, of course, equal to the number of the opera-
tors A+, A, U which can be constructed for one major shell. We change, at the moment,
the base of infinitesimal operators and turn to the calculation of all possible 4+, 4, U opera-
tors, which by the (23) and (40)-(42) form a complete set of operators. By the definitions
{21), (32) and with the help of (33) we get the following numbers

71- {(N+1) (N+2)}2
% (N+2) (N2+3N+4)

%(N+2) (N2+3N-+4)

for the U, A+ and A operators, respectively, on the N major shell of harmonic oscillator.
‘The total number of the operators in the closed set is

1
5 (NV+1) (N+2) {(V+1) (N+2)+1} 43)
which suggests that the symmetry group connected with them is either the symplectic

group in (N+1) (N+2) dimension or the orthogonal group in (V+1) (N+2)+1 dimen-
sions.
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To choose the right group we have, once more, to change the basis of infinitesimal
operators from A+, A, U into

—_ .+ +
92.. =a;a,t+a;0;,
+ 4 4
g _a"a” a;a; (44)
T i = 0,0,—a,0

i 03— iy,

where indexes i, denote (/m) and (I, m’) from the major shell N. The more complicated
operators A+, A, U are built exactly from the (44) operators and the number of these two
sets of operators are equal. This means that the (44) operators can be equivalently taken
as generators of the same group. The set (44) is of course closed because of the following
commutation relations

(R Ry) = 0pRi— 6, Ry;
[yu’ ‘Spkll [‘7'1)’ g—kl] =0
[9?:]’ & kl] = jky aT 5,'15” ik (45)

[ i kl] = ‘5&7'“6:13"

(Zip Tl = 05 Ri;+ 00 R+ 0, Rip+ 0, R

Moreover, the relations (45) are known [19] to be the commutation relations for the infinite-
simal operators of the symplectic group. This is the very end of searching for the symmetry
group emerging from the pairing plus guadrupole forces. The group we have found is

Sp(n) where n=(N+1) (N+2). (46)

gt

The result of (46) is not unimportant. If we take the simplest two particle operators from
the N shell

ata; atat; aa 47)

the resulting group for them is the orthogonal group in 2{(N+1) (N+2) dimensions [7].
The usefulness of the result (46) can be measured by simplification given by the group
Sp{(N+1) (N+2)} as compared with the group R {2(N+1) (N+2)}.

Let us take as a simple illustration the N = 1 shell, with the only spatial state [ == 1.
‘There are six spin-spatial one particle states and sixty-six operators a*a, atat, aa respectively.
They form the closed set of generators of the group R (12). The result {46) shows that one
can take a simpler group, namely Sp (6) group to deal with pairing and quadrupole forces.
In this simpler case we can take, instead of (44) operators, the physical operators @, &, 2
and 9%, whose number is exactly twenty-one, as for the Sp (6) group, and which form the
complete set of infinitesimal operators (see Table). With the help of the Table I we can con-
struct, using the standard technique of group theory, the Casimir operator for the Sp (6)
group. It gives

1 -—
€ = 5 (BL+3L2+28 = Y (- )1 B~ 40Dy} (48)

with the meaning of the letters given before.
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The % operators take on the form of (31) but without the terms containing A(Z, [+2).
These simplifications lead to the conclusion that the #-part of (48) is the kind of inter-
action which couples the pair to the total L == 2; it is the so-called pairing-quadrupole in-
teraction. If we include it into the total Hamiltonian and adopt the coefficients given in (48),
we can get

H =k (8D, P_+ 22+ B = I (966 —8L(Py—6)—3L% (49)
where

B =3 (—1)(BFR_) (50)

is the pairing-quadrupole interaction and % is the overall proportionality factor.

The Sp (6) group is the 3™ rank group with three weight-operators which can be
chosenas £, £, and 2,. We can calculate an eigenvalue of the Casimir operator in these
terms. The result is

1
(&) = 3 {8wy(w; +6) +3wy(wy +4) + 3} 51y
where
) = max (Py) ;= max(Ly) w;=max (2,
under the usual restriction.
The relations (49) and (51) enable us to calculate the energy of pairing +quadrupole+

+ %% forces among the nucleons on the [ = 1 shell in term of the highest weight of the
Sp(6) operators and of the total angular momentum eigenvalue.

REFERENCES

[11 Y. Wada, F. Takano, N. Fukuda, Progr. Theor. Phys., 19, 597 (1958).

[2] K. Helmers, Nuclear Phys., 23, 594 (1961).

[3] A.K. Kerman, Ann. Phys., N.Y., 12, 300 (1961).

[4] B. Flowers, S. Szpikowski, Proc. Roy. Soc., 84, 193 (1964).

[5] B. Flowers, S. Szpikowski, Proc. Roy. Soc., 84, 693 (1964).

[6] M. Ichimura, Progr. Theor. Phys., 32, 757 (1964).

[71 H.1. Lipkin, Lie Group for Pedesterians, North-Holland Publishing Company, Amsterdam 1965.

[8] K. T. Hecht, Phys. Rev., 139, 794 B (1965).

[9] A.K. Kerman, R.D. Lawson, M. H. Macfarlane, Phys. Rev., 124, 162 (1961).

[10] S. Szpikowski, Annales Universitatis M. Curie-Sktodowska, Lublin — Polonia, sectio AA, 77, vol. XIX.
10 (1964).

[11] J.M. Jauch, E. L. Hill, Phys. Rev., 57, 641 (1940).

[12] J. P. Elliott, Proc. Roy. Soc., A 245, 128 (1958).

{13] J. P. Elliott, Proc. Roy. Soc., A 245, 562 (1958).

[14] 1. P. Elliott, M. Harwey, Proc. Roy. Soc., A 245, 557 (1958).

[15] M. K. Banerjee, M. Harwey, Phys. Rev., 130, 1036 {1963).

{16] M. Gourdin, Unitary Symmetries and Their Application to High Energy Physics, North-Holland Publishing
Company, Amsterdam 1967.



