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THE PROBLEM OF EXISTENCE OF A SCATTERING S-MATRIX. II

By J. Ravysk:
Institute of Physics, Jagellonian University, Cracow*
{ Received October 3, 1969)
It is shown that the S-operator cannot exist, but it is possible to define probabilities

in momentum space by a careful transition to the limit. Our construction is quite independent
of any asymptotic conditions upon the ingoing and outgoing fields.

In their efforts to derive an S-matrix from the quantum field theory, physicists used
to start with a unitary operator U(t,, t;) transforming the initial state |7 at the instan t,
into the final state |f) at ¢, and performing a transition to the limit

S = lim U(t,, t;) )
1500
Iye—o0
where
1f> = Ulta, t)15)- 2
It is convenient to split the operator U(ty, £;) as follows:
Uy, = Ulty, t) = Ulty, 0) U(0, ty). (3)
If U(t,0) is assumed to be of the form
U(t, 0) = eHofe it 4)
then the matrix elements
<p"|Ulty, t)Ip"> )

are shown to denote probability amplitudes for obtaining, in a measurement at ¢,, the
eigenvalues p”’, if the initial state at z; was an eigenstate to the eigenvalues p’, where p means
a complete set of observables commuting with the energy H,, of the system of free particles.
With the help of rather intuitive arguments it was argued that the limit transition (1) makes
sense if performed cautiously, and that the eigenstates of H,, go over asymptotically into
the eigenstates of the total energy H belonging to the continuous part of its spectrum.
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However, the approach using such sophisticated arguments is mathematically dubious
and physically incorrect.

First of all, the definition {2) of the scattering operator is ambiguous because it de-
pends upon the choice of the Picture. In fact, using the Schridinger Picture we get

Ugi) — e*iH(t.—tx)’ (6)
while in the Heisenberg Picture it is nothing else but
U = ©)
whereas only in the Interaction Picture

Ué{) — eiHo‘!e—'.H(t:“tl)e—iHoﬁ (6”)

is consistent with the usually assumed form (4) and is equivalent to Dyson’s expression
I3
UR) = Texp (—i [ Hiyydr) )
I

where H, ;,) is the interaction energy expressed in the Interaction Picture and T'is the operator
of ordering in time.

In order to define the scattering amplitudes correctly we have to look more carefuly
into the problem of probabilities for transitions between the initial and final states characteri-
zed by the eigenvalues & and &" respectively whereby £ denotes a complete but arbitrary
set of observables. Let us assume that the Schrédinger, Heisenberg, and Interaction Pic-
tures coincide at £ = 0 and denote the eigenstate to the eigenvalue & at the instant ¢t = 0
simply |£). The ket vector, which is again an eigenvector to the same eigenvalue & but
for & measured at the time instant ¢, will be denoted by |£’, ¢> (the corresponding bra by
<&, t|). This must not be confused with the dynamical change of the state vector in the
course of time! In order to avoid possible confusion we shall denote by [z, &) (and (¢, &'|)
the state vector which has developed dynamically, in the course of time, from the initial
1§> and ceased to be the eigenvector to the eigenvalue & unless & is a constant of motion.
‘The probability amplitude of finding in a measurement performed at the instant ¢ the eigen-
value &”, if the initial state was an eigenstate to the value & at ¢t =0, is

aE"s’(t) = <§"a tlt, §'> (8)

‘This expression is quite general, independent of the Picture. Let us apply it first to the
Heisenberg Picture. In this case the state vectors are dynamically time-independent, so
that

|, & >p = 1> ©
However, the operator £(¢) is time-dependent and <<£”, ¢| satisfies the eigenequation
’ ttf(t) — §I'<§ll’ l' (10)

or

<€, t|leH e = £ <8, 1. (10"
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Multiplying both sides of (10") from the right by e we find that <&”, t]¢’* is an eigen-
vector of the operator & (referred to the initial instant ¢ = 0) to the eigenvalue &"'. Hence,

<§u’ t]eth _ <§"t or <§n7 tlH — <§n’e—th. (11)
Introducing (9) and (11) into (8) we find
Qpoplt) = <5”|9_th|5’>- (12)

In the Schrédinger Picture the situation is just reversed: the state vectors are dynami-
cally time-dependent,

[t, & >g = e H|E > (13)

but, in contradistinction to the Heisenberg Picture, the vectors denoted by |£”, t>> become
time-independent,

[ t>s=18"> (14)

because they satisfy the same eigenequation to the same eigenvalue of the same operator &

and, thus, can differ at most by an immaterial phase factor. Introducing (13) and (14) into
(8) we find again the same result (12).

Let us check (12) also in the Interaction Picture. In this case the dynamical law is
]t, §'>I — eiHote—iH£IE!> (15)

whereas <&, t| satisfies, ex definitione, the eigenequation

<&, 11E{t) = & <&, 4] (16)
N i
<&, lleiH°'§e"iH°t = &<, 1| (16)
whence it is inferred that
<&, tlgy = <E'|eHe, 17

Introducing (15) and (17) into (8) we get again (12).

In this way it is seen that it is the operator e ~*#* rather than e#e’e~*F* which describes
correctly the transition amplitudes. Consequently, it is rather the operator (6) and not (6")
which should be taken as a starting point for a correct derivation of the S-matrix.

Inasmuch as the operator (6”') does not define properly the probability amplitudes
and, obviously, does not allow for the limit transition #,—>o0, t;—>— o the operator (7),
being equivalent to (6”), does not allow it either. But these operators were defined in the
Interaction Picture and the adequacy of the latter was put in doubt by several authors.
Under such circumstances people tried to define the S-operator in the Heisenberg Picture.
To this end the differential field equations valid in the Heisenberg Picture were replaced
by integral equations expressing ¢ as a sum of 9" and an integral involving the retarded
Green function or as a sum of ¥°** and an integral involving the advanced Green function
whereby the ingoing and outgoing fields mean free fields coinciding with the interacting
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field p asymptotically for t—— oo and t—> oo respectively. The S-operator was defined as
that transforming the ingoing into the outgoing fields

wout - S—l,(pin S. (18)

However, the integrals appearing in the integral equations possess only a meaning as limits
of the corresponding integrals taken between #; and ¢, while '® and °"* are to be under-
stood as limits of free fields ", ¢ coinciding (up to the first order derivative in the case
of bosons) with the perturbed function y at the instants #; and ¢, respectively. Thus, the
operator S must be understood as a limit

S = lim Uy, (18"
e
where
,‘Pt, — Uz—ll,lptl U21? (18”)

if this limit transition exists.
However, a closed form for U, may be obtained immediately without solving the
integral field equations by iteration. In fact, since ¢ and ¢ are free fields, they satisfy

Pty = eFitnyfa(0) ¢~ Hm (19)
Wii(ty) = eHetng(0) ¢~ iHek (19")
and, from (18")
9(0) = Ugp™(0) Uy (187)
Introducing (19) and (19') into (18”) we get
e~ Hih(t,)o i = Ugle Hifugh(y)e U, (20)
or
o~ ety 1) Hoh = Uy te=Hotup(5,)™Hon Uy (207)

because y™(t,;) coincides with (¢y) and y™(t,) with 9(t,). In view of the dynamical relation

P(ty) = HEty(p) e~ HEH) @n
the formula (20°) may be written in the form
e—iHnt, eiH(t’—")lp(tl) e—iH(t,—tl) eiH,,t, — U2—11 6_iH"t1’(p(t1) eiH,t, U21 (2011)
which yields
U21 — e——iHDt1 e—z‘H(t,—z,) eiH,,t,' (22)

Comparing it with (6”) it is seen that Uy, defined from integral equations valid in the Hei-
senberg Picture differs from (6”) obtained in the Interaction Picture merely by a unitary
transformation and becomes identical with (6") if the time interval is taken symmetrically
with respect to zero (¢, = —¢,). Thus, the operator U, defined in the Heisenberg Picture
is essentially the same as that defined in the Interaction Picture and presents the same
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difficulties: It denotes probability amplitudes in the momentum representation only and
does not allow for a limit transition fy—> o0, t;—>— oo,
The mistake encountered so frequently in the literature, consisting in confusing the
operators
Sy = e~ HE—H) (23)
and
U21 — eiH,t, e—iH(r,—t,) e—iH,,t, (23:)

came about from the fact that, usually, people started with discussing transitions between
eigenstates of observables p commuting with the kinetic part of the energy H,. In this
and only this case both operators may be used equally well to compute probability ampli-
tudes because the corresponding matrix elements differ only from each other by immaterial
phase factors

<Pl U21!P'> == eiE;’t’<P”1521]P'>3~iE n (24)

and yield the same probabilities. However, it is unallowable to sandwich the operator Uy,
between states denoting wave packets, because wave packets do not possess a sharp value
E,. One forgets too often the fact that the matrix elements of Uy, mean probability ampli-
tudes only if sandwiched between eigenstates of Hy. This may be illustrated by the following
very instructive example: Let us consider eigenstates of the total energy H. Using the cor-
rect operator Sy we get the correct result

<E", 77Hle--iI{g lEt, 771) — e—iE":<En’ nHIE's nl> — 0 (25)

if E” # E" or %" # 7' (where 7 denotes the remaining observables specifying the state)
because these states are stationary. On the other hand, by using the operator (4) and inter-
preting (wrongly) the corresponding matrix elements as probability amplitudes one gets

<E”, n,,Ie,'Ho, e—iHE ]EI, 1]1> — e—z‘E't <E”, nuleiyntlEr’ 7]:) (251)

which usually is different from zero for E’ # E' because H, does not commute with H.
In view of such a result people used to speculate that the apparent non-conservation of
energy is explicable in terms of the fourth uncertainty relation 4E - At~h where At means
a finite interval between the two measurements. Such speculations only show ignorance
as to the meaning and role of the fourth uncertainly relation in quantum theory.

On the other hand, the form S,, being valid for arbitrary initial and final states, nothing
prevents us from sandwiching it between state vectors representing wave packets separated
spatially at the initial and final instants, i.e. to describe with the help of Sy, genuine scatte-
ring processes.

The correct transition operator may be written in the form

4
S(t,0) = e Het T exp (—i fH'; dt’) (26)
d

and developed into a power series in terms of the interaction Hamiltonian HY. Thus, a per-
turbative expansion is still possible if H' may be regarded as “‘small’.
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Mere inspection of the formula (23) for Sy, or (26) for S(¢, 0) shows that these operators
exist only for a finite time interval and the limit transition t;—>— 00 t,—>o0 is impossible.
The S-operator does not exist and no mathematical tricks with the limit transitions
can help it.

Nevertheless, probabilities can exist if we start with wave packets. In this case the
amplitudes are

f ' E ’ —
=" [ dp'a*(p")e“5°"<p”ITeXP(—i! diH)ipyeBha(p').  (27)

Due to the appearance in (27) of the exponential factors e (which were missing in the
usual approach starting with (3) and (4)) the integrations over a finite interval 4F, yield
the necessary damping for large values ¢, and —¢; because the packets overlap only during
a time interval of the order

At - AEy ~ h. (28)

Consequently, the limit transitions t,— 00, t;—>— oo are allowed for the squared absolute va-
lues of (27). The limit transition AE;—0 is also allowed in (22) provided we keep the
inequality
(ta—t) AEH, (29)

otherwise we would run into contradictions: either obtain a meaningless result or a triviality
S=1

The above described approach is completely independent of any assumption about
the asymptotic properties of the ingoing and outgoing waves.



