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EXPLICIT REALIZATION OF E(2) SYMMETRY COMPATIBLE WITH
THE ANALYTIC S-MATRIX
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An explicit mapping procedure is used to determine an approximate off zero-momentum
transfer-squared symmetry group for the inelastic binary connected part.

I. Introduction

After the discovery of the importance of the special SO (3,1) symmetry of the scattering
amplitude at zero momentum transfer () = 0, attempts have been made to study the situa-
tion when the momentum transfer is non-zero. One may distinguish here two approaches.
The first one is due to Delbourgo et al. [1]. These authors consider the expansion of the
scattering amplitude in terms of the matrix elements of the irreducible unitary representa-
tions of the physical homogeneous Lorentz Group as the essential mathematical consequence
of the Q@ = 0 symmetry, and therefore, they concentrate on and succeed in obtaining ex-
pansions in terms of the physical Lorentz Group for ¢ # 0 which go smoothly into the
Toller expansion as Q—0 [2]. The other approach presented in a paper by Bali et al. [3]
is concerned with the question of what happens to the symmetry group for Q’s slightly
off the zero point. Their stated purpose was to show that for Q = 0 (and for multi-particle
reactions involving six or more particles), we have an approximate symmetry of the scatter-
ing amplitude with respect to a group which is isomorphic to the Lorentz Group and as
(@—0 tends to the group of Lorentz transformations. (Strictly speaking, they realized their
program for the O (4} subgroup of the complex Lorentz Group SL (2, CY®SL (2, C)).
This property makes the Q = 0 symmeiry compatible with analytic continuation and
enables them, in principle, as sketched in [3], to obtain Lorentz poles from S-matrix equa-
tions.

It is known that at Q% = 0 (Q # 0), we have another special symmetry of the scattering
amplitude, namely with respect to the E (2) group. In this note we study, in the spirit of
Bali et al. [3], the question of the formulation of the approximate zero-momentum trans-
fer-squared symmetry and we follow closely their method. This case has two interesting
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aspects. First, the discontinuous change in the number of momentum components, in
addition to the momentum transfer (), necessary to specify the initial and final momentum
states pointed out in [3] obviously does not occur in the binary inelastic case, hence we
can treat this case. Second, as we shall see, we are able to obtain an isomorphism with the
physical F (2) symmetry group, i.e., we are able to realize the original strong version of
their formulation for this case.

II. Statement of approximate Q% = 0 symmetry in the absence of spin

We adopt the notation of Reference [3] and consider the Toller description of a connec-
ted part in which the total number of particles IV is divided into two sets 4 and B, with
momenta py4, Pogs -3 Pig> Paps --- Such that

Na Np
Q= ZP{A = §1pi8 2.1)

1=1

where N = N +Np.

Within the set A, particles with positive energy are out-going, and negative energy in-
-coming. The reverse is true for B and there is at least one in-coming and one out-going
particle in each set. The connected part is denoted by MQ(Pg, P9). For each light-like four-
-vector ( there is a physical E (2) subgroup of the physical Lorentz Group which leaves
it invariant and which we denote as E3(2). For example the three generators of E(, ¢,0,0,)(2)
may be expressed in terms of the generators of the Lorentz Group as

Jies 7y = Jio—Jis» 7o = Joo—Jos (2.2)
and the group element may parametrized in the ‘‘Eulerian” manner
E(cu,O,O,w)(<p’ E’ 1/’) = e—iw.fue—iEﬂ;e—in“- (23)
In general, for any light-like Q we have by definition
Eyle) 0= 0

and from Lorentz invariance
Mp(PS, PS) = Mz(Ej(a) P, Ez(a) PD). (2.4)

For Q% 5 0, E (2) is no longer even an approximate symmetry of the connected part since
the action of its elements on P2, PZ leads off the mass shell. This is seen if we note that
the connected part is described by the momenta Q, p;,, p;5 subject to constraints imposed
by (2.1) and the mass shell conditions. In particular, P$ is the space of p,, such that

2 _ 2
DPiq = Mgy
2 __ 9
Poa = Mgy

(2.5)
P12\14—1,A = miu—m

(Q—Pra—Paa— "'—pNA-l)z = mzzm
and similarily for P%.
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The last mass shell condition is not invariant for Q2 # 0 with respect to E (2) acting on
Pg.

Our aim is to show that for small Q% 5 0 there exists a group E§ which is isomorphic
to E3(2), with elements denoted by E2(«) under which Eqs (2.5) are invariant and with
the property

lim E§(«) P§ = Eg() P2 (2.6)
-0
where () is light-like. Similarily for P2, with a corresponding meaning for Eg(«). Since
E (2) is a subgroup of the Lorentz Group, then from Lorentz invariance, we have

M(P§. P) = Mol E5(e) P, Egla) P§) @.7)
and from (2.6) and (2.4)

Mp(PS, P§) = lim My(EA(«) P, E5(a) P§) (28)
0-Q
which express the approximate invariance.

III. Explicit construction of E§ for Ny =2

We shall show that, at least for two-particle reactions a group with the properties descri-
bed in Section II exists. The sets A and B now consist of two particles, and, for instance,
the space P2 is the space of one vector p, = p = (p° P) subject to the constraints

pE=mi
(Q—p)? = mj # m}. 3.1)

For Q% # 0, operations of the elements of the group E (2) will lead outside this space.
However, as explained in Section II, we are going to show that there exists a group isomor-
phic to E (2) which spans the space P and does not lead outside of it. In order to do this,
we construct a one-to-one mapping of the space P2 onto a space Pg which is carried into
itself by the group Ep(2). This reference space is constructed in the following way. As we
shall see at the end of this section, we can assume, without loss of generality, that

0 = (@, 0,0, w). (3.2)
Then, if we set

2 2
FOES (E’fo—Jri”i“i,o,o,— — 4 '"1“’) (3.3)

2x 2w 2x
mi—m}

2

where X =

we can express any element of Pg as

pla) = Ez(a) p(0). (3.4)



74

From the parametrization (2.3) it is seen that only two of the three parameters « are active;
in particular, the angle v is inactive. The vectors p(a) satisfy the constraints

pHa) = m]

(Q—p(@)? = m}. (3.5)
We explicitly define a mapping fj: P%—)-Pg by means of the following
pY%@) = (L+&(Q, a)) p°a) energy components

play = (1+&(Q, x))p() space components (3.6)

where ¢ and &' are to be determined from the constraints (3.5). Note that the map f,
is not a covariant one, and the frame of reference in which it is to be applied will be specified
later. After inserting (3.6) into (3.5), we obtain

(1+¢)%" (@) — (1+¢)*p*(a) = m]

1+9P (@@~ (1+)p(e) - @ = x + L. (37)

For (Q° # 0, eliminating &, we get

(L+&)2(QY) (P - Q)P +2(1-+£)(Q0)-2 ( . %_) y

¥ B O (002 (x + .02_2> —m¥ =0, (39)

The determinant of this quadratic equation

4 —4 {(@)-2152 ( 2 @ 0ymt—poni] (39)

must be positive in order to make our mapping real, and this leads to the requirement
that

2/9)2
ov < BFO2" (3.10)
my

It is obvious that there exist Q’s satisfying (3.10). (For spacelike Q’s a frame of reference
where this condition is satisfied always exists, for time-like Qs such a frame exists when
Q% < (my—my)? or Q2 > (m, +my)2.) But we are not interested in arbitrary ()’s rather since
we desire to establish a smooth limiting procedure such that Q—>(), we are only concerned
with those @’s which are in the neighbourhood of (. This means that () must also obey
{3.10) or from (3.2) we find that
x

e (3.11)

10° = || <
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This can obviously be satisfied because from its definition, |x|>0. Now one can readily
construct a sequence {Q,} such that each Q, satisfies (3.10) and the lim Q, = (~_) where @

n-+c0

satisfies (3.11). We then fix the real map fg by requiring that both & and & vanish as
Qn_)Q'

However, we are not finished yet, because, it is essential that the map f, be 1—1 onto.
From Eqs (3.6) it is evident that for given set of parameters & we get a unique vector (p°, p).
To establish the converse, we write formula (3.6) in the form

(@) = (1+e&)7 p°a)

pla) = (1+&)'p(a) (3.12)
and insert this expression into (3.5). This leads to our equation for (1+¢&')" of the form
(3.8) with p(a) replaced by p(a) and Q replaced by Q. And the condition which guarantees
a real solution is |(}°] = |w| < |#/m,| which is precisely condition (3.11). Thus, the coeffi-
cients g, & are uniquely determined by the vectors p(a) and (?, and in particular, from
(3.4) and (3.12), we have

i 2
10 l x| mie
(L+2)7p 2w + 2x
. 1+ s')‘lpr 0
EZ(@ |1 i 0 (3.13)
}
| x miw
14y pn -—'Z:O—"‘}‘—i;—

Further, the two active parameters @ are determined by the condition that after applying
the transformation E Y@) to the vector ((1-+&)~1p° (1+£')-'p), the first two spatial

components of the new vector vanish. Thus the map f, is one to one onto and the group
of transformations E§(«) introduced in Section II are linear transformations in the space

P2 induced by the transformations p(a’)—>p(a’”’) in the space Pg with &' = &’ Since when

Q—Q, & and ¢ vanish and p(a)—>p(«), thus, we see that lim Ed(«) indeed satisfies (2.6).
-0

Now the existence of a real 1—1 onto map fg given by (3.6), which explicitly shows

the existence of an approximate symmetry group as defined in the sense of Section I, is
valid for any sequence {(Q,} with a limiting light-like vector Q = (@, 0, 0, @) satisfying
(3.10) and (3.11) respectively. We can now easily extend our mapping procedure to any
arbitrary sequence {Q.} with a limiting light-like vector Q' with the following prescription.
Given any such sequence, select any sequence {Q,} satisfying (3.10) with its limit satisfying
(3.2) and (3.11). Then, Eg;(ac) is determined as shown schematically

(PF @) ———— (P B4 (@)

1-1
171_”” ontolf“

L
~ {(P§, Eg(@)}

1-1 onto

{(P§", Bz =L-'Ez(a)L)}
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where L, is the Lorentz transformation connecting @, and Q,, and E, (a) and Eg (a) are
in general equivalent representations of E (2) which leave the light-like vectors Q" and ('
invariant, respectively. Thus, we have achieved an explicit realization of the formulation
of approximate symmetry stated in Section II.

IV. Inapplicability of the construction given in section II for N,>2

If we repeat our construction for a space P2 consisting of more than two particles,
then it turns out that the mapping is no longer real. For instance, for three particles, the
space P consists of vectors p; and p, subject to the constraints

pi=m} py=mp (Q—pi—p)*=mi.
With Q = (o, 0, 0, @), the space Pg invariant under E(2) may be parametrized as follows
PO = (@,0,0, Va?—m})
P2(0) = (5,0, Vb2—c2—ml, ¢)
1;1,2(“) = E(“);h,z(o)
where a? >m2, b2 > c24+m) and ¢ = (mE—m2—mi—2ab+20 (a+b— Va2—m2))/2(w—
- Vaf— m}) with py, satisfying p? = m2, p} = m3, (Q—p,—p»)? = m3. But, when we
map p; 5 0nto p, , by the method of Section III, i.e., use Eqs (3.6) for the connection be-
tween py(a) and py(x) and let py(a) = p,(), then it turns out that &, & become complex

for some values of @. So that at least by this method, the extension to more than two parti-
cles is impossible.

Conclusion

Using an explicit mapping procedure, we have been able to determine an approximate
zero-momentum transfer-squared symmetry group for the inelastic binary connected part
which is isomorphic to the physical symmetry group E (2). This is a realization for the
case of E (2) symmetry of the original strong version of the smooth analytic S-matrix approach
to exact symmetry given by Bali, et al.
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