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LOCALIZABLE AND NON-LOCALIZABLE FIELD THEORIES
By E. Karuscik*®

International Centre for Theoretical Physics, Trieste**
(Received November 5, 1969)

The notion of localizability of field theory is discussed. New criteria for localizability are
found and the relationship between Lagrangian and localizability is sketched.

Introduction

The content of any quantum field theory can be formulated in several different ways.
Among them the so-called Wightman formulation proved to be most convenient for precise
definitions of various concepts used in field theory and general discussions of basic properties
of field theory.

Recently, the class of field theories discussed has extended considerably, concentrating
on non-renormalizable field theories. While the Wightman formulation can be adapted to any
new field theory without any fundamental trouble, adaptation of the Lagrangian formulation
is not a trivial task. Only for a restricted class of non-renormalizable interactions do computa-
tional methods exist which allow these cases to be treated in close analogy to the usual
Lagrangian field theory.

The distinction of the non-renormalizable field theories follows from the usual power-
-counting theorem by which for these theories we must introduce an infinite number of
counter-terms into the interaction Lagrangian. But it turns out that the difference goes much
deeper. The notion of non-renormalizability is closely connected with the notions of localiza-
bility, of fields and locality of the interaction. This makes some non-renormalizable field
theories completely different from the usual ones.

In what follows we shall discuss the notion of localizability of field theories. In Sec.1
we briefly review this concept and give the known criteria of localizability. Then in Sec. 2
we discuss some such new criteria and indicate their advantages and disadvantages. Finally,

in Sec. 3 we briefly sketch the connection of the types of Lagrangians with the notion of
localizability.
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1. Strictly localizable field theories

The usual Wightman formulation of quantum field theory is based on the following
requirements {1}, {2]:

a) The physical states form a Hilbert space.

b) The fields are covariant with respect to the Poincaré group.

c) The energy is positive.

d) The theory is causal.

From the first two requirements it follows that a field cannot be an operator-valued function
of the coordinates {3], [4]. The example of free field theory shows that is possible to treat
the field as an operator-valued generalized function, but the question immediately arises
how to choose the test function space [5]. Unfortunately, this question cannot be answered
on the basis of the above-mentioned physical requirements and usually the fields were
treated as operator-valued distributions for which the vacuum expectation values of products
of field operators were tempered distributions in the space S’ (for definition of S’ see Ref.[5]).
It has been believed that the requirement of temperedness appears very natural from the
physical point of view, since it reflects the symmetry between the coordinate and momentum
space and it is fulfilled in any order of perturbation theory in all renormalizable field theories.
But it simultaneously excludes a large class of field theories, one of which is the field describing
weak interactions.

In the past there have been several suggestions that the postulate of temperedness
must be changed [6], [7], [8] but only Jaffe [4], [9] has shown that the requirements a}—d)
can be incorporated in a theory with a much wider class of fields. These fields he called
strictly localizable fields and by

Definition: we say that a field is strictly localizable in a certain compact region of

space-time if it can be averaged (in order to yield a well-defined operator) with some

test function which vanishes outside this region.
The reason for using the compact sets as a region of strict localizability can be explained as
follows. The property of the set to be compact is equivalent to the properties of boundedness
and closeness of the given set. The requirement of boundedness for strict localizability is
obvious, while the closeness is connected with the fact that the notion of strict localizability
requires that it must be possible to go out from the region of localizability by an infinitesimally
small step and this is only possible for closed sets.

In the mathematical language, the above definition means that the field theory will be
strictly localizable in a compact set k of space-time iff among the test functions we can find
functions which have the compact set k as their support. If the set &k can be an arbitrary
compact set then we shall simply speak of localizable field theories.

So we see that the requirement of localizability can serve as a restriction on the choice
of test function space. Simultaneously, we see that in the case of localizable field theories we
can formulate the causality condition in the sense of local commutativity of fields.

The class of strictly localizable fields is very wide since, besides tempered fields, it includes
all entire functions of free field, some not entire functions and some non-renormalizable
field theories. In momentum space the localizable fields admit a non-tempered, e.g. exponen-
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tial, character of spectral functions and so the off-mass-shell amplitudes in such theories
can grow faster than any polynomial at large energies.

From a physical viewpoint, the smallest class of test functions must contain the fuctions
with compact support in momentum space. However, the Fourier transforms of such func-
tions, i.e. the test functions in coordinate space, do not contain functions with compact
support and consequently such a theory may not be localizable. For this reason the class
of test functions in momentum space must be larger than the set of functions with compact
support.

Jaffe proposed to use as a test function the functions f(x) whose Fourier transforms
f( p) are such that

sup g(4lpII") A+IpIBMD(p)] < oo )
peRt

where n, m and A are integers and
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The function g(t), called a Jaffe indicator function, is an entire function which will characterize
the momentum space growth of the off-mass-shell amplitudes. The property of strict local-
izability can be translated into a property of the growth of the indicator function g(z). Jaffe
has proved the following

Theorem: The quantum field theory is strictly localizable if and only if

In g(¢2)
f 1412 dt < oo. @
0

For the localizable theories the test function space always contains sufficiently many functions
with compact support. This fact is a content of the second fundamental theorem proved
by Jaffe.

The negative feature of Jaffe-type spaces is that there is no one smallest space contain-
ing all the others. Hence there is no one test function space suitable for all strictly localizable
fields. Each field will dictate which test function space is appropriate for that field and the
relevant test functions will vary from problem to problem.

Another possible approach to strictly localizable fields is to consider the theory with test
functions from the S,-type spaces of Gel'fand and Shilov [5]. In this case the test functions
are defined to satisfy the condition

sup [PD(p)| < CsMbphhghih A Ap A Ay ®

where k = {ko, ky, kg kg}, p* = pke pfr pfr pk, with arbitrary integers ko, &y ... k3, C,
and A’s constants depending on f, and D? is similarly defined as before. The numbers
ty...03 are all positive.

The properties of field theory defined as a generalized operator-valued function with

an S, test function in momentum space have been extensively studied by Constantinescu
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[10], [11]. The property of being a strictly localizable field theory is in this case formulated
as a condition for the numbers & and we have the
Theorem: The field theory is strictly localizable if and only if

«;>1 for i=0,L23.
The S, spaces have the property that
' S, CS

S
for

oy < &g,

and thus the minimal space containing all strictly localizable test functions is the space 5; ; ; ;.
However, in spite of the above theorem this space does not contain functions with compact
support and thus cannot serve as a test function space for a strictly localizable field theory.
Nevertheless, the investigation of this type of theory is interesting since it is a limiting case
between strictly localizable theories and those where the notion of localizability and thus
locality is not defined. Note that for this limiting case it is still possible to have a theory
where the interaction has a local character [12].

2. Properties of test functions for localizable and non-localizable theories

In the proofs of theorems concerned with classes of functions, the notion of quasi-
-analytic classes of functions is frequently used. The importance of this class of functions is
connected with the fact that among functions which form such a class there is no function
with compact support. So, if we can show that our test functions form a quasi-analytic class,
we surely know that the theory is not localizable. The converse is also true since, due to
Mandelbrojt’s theorem, every class of functions which is not quasi-analytic contains a non-
-trivial, positive function with compact support.

There are several criteria of the quasi-analyticity of a given class of functions. Among
them the best known are the Carleman-Denjoy and Ostrowski theorems. They have been
used by Jaffe [4] in deriving his bound (see Eq. (1)). Before discussing other such criteria,
we discuss another much simpler criterion based on the Bernstein theorem.

First of all, we shall say that a function is of limited spectrum if its Fourier transform
has a compact support. For such a function it is clear that it cannot vary too rapidly, since
in its harmonic decomposition the high frequencies are absent. The Bernstein theorem
serves as a measure of this phenomenon and says:

Theorem: If the Fourier transform of the function f(¢) has a compact support, then

(0 <2=aL- B(f)

where 2L is the measure of support of the Fourier transform of f(t) and B(f) is the upper
bound of the function f(z), i.e.

11@®)] <B(f)-

The proof of this theorem is straightforward and can be found in Ref. [13].
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This theorem admits an immediate generalization to higher derivatives in four-di-
mensional space in the following form:

Theorem: If the function fn('po...ps) is of limited spectrum, then

I F( p--. i
a—mf_fn{’_"’;jz < @m)\mLmL ... L3 B(f) @)
9?0 pr aPs
- 8
where L; measure the support of the Fourier transform of f( p) in each variable and |m|= ] m,.
f=0

Using the above theorem we immediately come to the following
Theorem: If the quantum field theory is a localizable field theory then among the test
functions in momentum space there are functions which satisfy the condition (4).

The converse of this criterion is also true, since if no test function satisfies the condi-
tion (4) then in coordinate space no function will have compact support.

Note that the above criterion simultaneously gives information about the magnitude
of the region of localizability in the coordinate space without the need to calculate the Fourier
transform. Also, there is no need to calculate the asymptotic behaviour and no need to
know the indicator function.This will be extremely useful for complicated forms of test
functions.

The second advantage of the above criterion is the fact that it does not use any topo-
logical property of the test function space. This fact is very important since no physical
fact serves as an indication of how to choose the topology. Moreover, in the present state
of knowledge, any argument based on a topology in order to rule out some field theory
is evidence rather against the chosen topology than against the considered field theory.
Since no physical requirement restricts the choice of topology we can freely change it in
order to achieve the assumed continuity properties. Apart from the aesthetic reason, even
if in this way we reach the discrete topology in the set of test functions there is no physical
reason to reject this possibility!

Unfortunately, our criterion has the disadvantage that it is only a necessary condition
for localizability, but not a sufficient one. It serves therefore rather as a criterion for deciding
whether the theory is non-localizable. In order to formulate a sufficient criterion, we must
know the inverses of Bernstein’s theorem, but they are rather poorly investigated and we
cannot therefore discuss them here.

The second property of localizable field theories we want to discuss is based on the
fact that each function of limited spectrum can be represented in the form (for simplicity
we write only the one-dimensional case)

=3 n \ sin 2rL(¢t —nf2L)
£ = ";w f (517) “Sal(t—n2L) ©

where L has the same meaning as above [13]. From this representation formula we see that
in order to calculate the localizable field operator for an arbitrary localizable test function it

. . sint .
is enough to know the value of the field operator for one function — Then, using the



298

translations and changing the scale, we get the value of the field operator for each term in (5).
Moreover, we do not need to know the test function in all points but only in denumerably
many equidistant points. This property greatly simplifies the calculation problem and
reflects the regularity properties of localizable field theories. But, once again, we cannot be
completely happy since we cannot prove that this simplification is the property of only
localizable and mnot of non-localizable field theories.

. In order to get a more constructive result, we now return to the theory of quasi-analytic
classes. First, we introduce some new definitions. We perform all our discussion for one
variable since the passage to the realistic case is straightforward.

Definition: A positive function g(x) is called a weight function if

+00
In g(x)
f 142 dx ©

Definition: The weight function g(x) increases normally if x g(( )) > 0 and is strictly
increasing to infinity together with |x|.
As a criterion for the function g(x) to be a weight function we give here the following

Theorem [14]: The function g(x) is a weight function if an only if

+00

In |P,(x)|
sy | Pt -

—o0

where the sup is taken over the set of all algebraic polynomials P,(x) which satisfy the
condition

P (0] < (1+]x)g()-

Next, in order to formulate the desired criterion, we need the following
Theorem: If f(t) is a function which is measurable and bounded on (— oo, -+ o0), then for
any ¢ > 0 there exists among the entire functions g,(t) of degree not greater than ¢ a function
&,(f3t) which deviates least from f{(¢), i.e. it is such that

veai sup | f()—g(f3 Ol = inf  vrai sup | () —g0)l

— 000 £5{t) —oo<t<oo
The above lower bound is called the best approximation of the function f{(t) by an entire
function of degree not higher than ¢ and is denoted by 4, (f).

Now we are ready to formulate an important theorem due to Bernstein which can be
used as a criterion for localizability of field theory.
Theorem [15]: For the class of all functions f(x) satisfying

M
A< 20,
where g(x) is non-decreasing on (0, o), to be quasi-analytic it is sufficient (and in the case
when g(x) increases normally also necessary) that g(x) is a weight function.

(0 >0, M(f) a constant),
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The above criterion uses only test functions in coordinate space and the role of the
function g(x) is quite different from that of the Jaffe indicator function. For this reason it
will not be so easy to translate the above criterion into the possible growth of Wightman
functions.

On the basis of the above discussion, we finally get the
Theorem: For strict localizability of field theory it is necessary, and under the condition
of the theorem above also sufficient, that the function g(x) is not a weight function.

© 3. Lagrangians and localizability

Interest in more general than tempered distribution field theories has increased in connec-
tion with so-called phenomenological Lagrangians discussed in symmetries. But, unfortuna-
tely, the relationship between a given type of Lagrangian and the localizability of the corre-
sponding field theory is not yet known. This is connected with the fact that such relationship
depends on the method chosen for constructing the Green functions of the field theory
from a given Lagrangian. There is no one unique way and, in fact, one cannot exist since
the Lagrangians have only a symbolic meaning. Nevertheless, several interesting methods
have been proposed [16]-[18].

In his latest papers, Efimov [19] used a sharp and drastic cut-off method which allows
one to calculate (or rather give a meaning to) the Green functions in momentum space for
a large class of non-polynomial interactions. The resulting two-point Green functions have
very large orders of growth and Efimov did not show that this is the minimal order of growth
needed in such theories. It is easy to see that actually this is not the case by comparing the
behaviour of imaginary parts of his Green funciions with the order of growth of the obtained
real parts.

The shortest way to decide to which kind of theory the one given by the Lagrangian

(o]

1]
LT Un
int =

.k ()
n=0

belongs is to take the rough estimate of the two-point spectral function g(s) in the second

order with respect to L. After simple calculations we get

int*

[s}

e =Y 1 0

n!

n=2

where 2,(s) is the n-particle phase space volume. From this formula specifying the coefficients
u, we can get the high-energy behaviour of the spectral functions and then look for an
appropriate test function space. However, this method is based on the assumption of usual
analytical properties of the amplitude in the second order with respect to L;;, which are
assured only in localizable local theories and for this reason such an approach is in fact
a formal one.
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