Vol. B1 (1970) ACTA PHYSICA POLONICA Fasc. 4

BINDING ENERGY OF A A PARTICLE IN NUCLEAR MATTER WITH
NONCENTRAL AN FORCES

By J. Dasrowsk1

Institute for Nuclear Research, Institute for Theoretical Physics of the Warsaw University*

Anp M. Y. M. Hassan*¥
Institute for Theoretical Physics of the Heidelberg University, Heidelberg, Germany

{ Received December 20, 1969}

The binding energy of a A particle in nuclear matter, B5( ), is calculated in the frame of
the self-consistent Brueckner 2" matrix theory. In the % matrix equations pure kinetic energies
in the intermediate states are used. The expression for B (oe), which includes the rearrangement
energy, is derived in the case of a AN interaction which is spin dependent, has a tensor and spin-
-orbit part and contains a hard core. Calculations have been performed with the modified Herndon-
-Tang potentials and with a one-boson-exchange potential. The tensor suppression effect is
-estimated to be about 2 MeV, which includes important contributions of the 3P AN interaction.
The role of the self-consistency requirement in the tensor suppression effect is discussed.

1. Introduction

In our recent paper [1] (hereafter referred to as I) we have presented, what we believe,
a very accurate calculation of the binding energy of a A particle in nuclear matter, B ().
In I we have used several pure central A-nucleon potentials, vy, adjusted to the known
binding energies, B,, of the light hypernuclei and to the measured cross-section for the
elastic A-proton scattering. For each of the potentials v,y considered, we have calculated
B (00) according to the Brueckner theory. Recently, Bodmer and Rote [2], [3] have performed
an almost identical calculation, and their results agree very well with those of I.

Let us summarize briefly the results of 1. The calculated values of B,(o0), in general,
turn out to be larger than the empirically estimated value,

B(o0) = 304+5 MeV. (1.1
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The best AN potential H of Herndon and Tang {4}, adjusted to the binding energies of the
three- and four-body hypernuclei and to the Ap scattering data, leads to the calculated value
of B,(o0) = 39.4 MeV. On the other hand, the AN potential F’ of Herndon and Tang, with
the charge-independent part adjusted to B,(3H,) and B,(°He,) leads to B,(c0) = 32.5 MeV.
in agreement with the empirical value (1.1). Thus it appears possible to reconcile the pro-
perties of the two systems, *He, and A-+nuclear matter which are similar in the sense that
both of them are spin saturated. However, the F’ potential produces a total Ap scattering
cross-section which is smaller than the measured cross-section by about 209,. Thus the
problem obviously remains how to reconcile the AN interaction in an isolated AN system
(in particular the Ap scattering) with properties of systems like He, and A+nuclear
matter.

One of the possibilieties of solving this problem seems to be the inclusion of a tensor
component into the AN interaction. One could expect that similarly as in the NN case,
a tensor force effective in an isolated AN system might be less effective, i. e., suppressed in
the A+nuclear matter system, and similarly in 5He. Namely, in the first order the
contribution of a tensor force to B, (o) vanishes, being spin-averaged out. In the second and
higher orders, the part of the intermediate states, for which nucleon momenta are smaller
than kg, the Fermi momentum of nuclear matter (in units of #), is excluded by the Pauli
principle. In consequence, one might expect the tensor suppression effect. Let us mention,
however, a suggestion of Bodmer and Rote [2] who point out that this effect might be much
smaller than in the NN case because of the expected short range of the AN tensor forces
whose longest range is determined predominantly by the exchange of the pseudoscalar K
and 7 mesons. Such short range AN forces excite nucleons predominantly to intermediate
states above the Fermi surface. Consequently, the suppressing effect of the Pauli principle is
expected to be less important.

In the present paper we calculate B,(o0) with AN potentials cont"unlng a tensor com-
ponent. In Section 2 the scheme of calculating B,(0) is presented. In the case of a pure
central AN potential, the scheme — based on the Brueckner theory — has been explained
in I. Thus, in Section 2, we emphasize the modifications of the scheme connected with the
presence of the tensor component in v,y. Some of the AN potentials applied in the present
paper contain also a spin-orbit term. Consequently, the equations of Section 2 are written
for the case when v,y contains a spin dependent central part, a tensor part, and a spin-
orbit part. All of the parts contain a hard core repulsion and may differ in even and odd an-
gular momentum states. The forms of the AN potentials applied in our calculation are
given in Section 3. Our results obtained for B, (o) are presented and discussed in Section 4.

Some of the results of this paper have been presented in [5] and [6].

2. The Scheme of calculating B,(oo)
We assume that the AN potential has the following form:

van = {0 (1) +0] (1) Spn +ofs(r) LS I+ {07 () +
+v; (1) Spn Fis(r) LS+ 1 ()T + ] ()1, 20D
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where the Il's are the proper projection operators, e. g., 3II- and TI* are respectively the
projection operators onto the triplet odd and singlet even states of the relative AN motion.
The tensor operator S,y is defined as usually:

San = 3l(onT) (0,7)[rF]—0 z0n, (2.2)

where @y, 6, are the Pauli spin operators of the nucleon and the A particle respectively,
and where 7 is the vector of the relative AN position. The relative AN angular momentum
operator (in units of k) is denoted by L, and

S = i(ontoy) (2.3)

is the total spin of A and N. We shall assume that all the radial functions v(r) contain a hard
core of radius r,.

Qur AN potential, v, is assumed to be charge symmetric. Nuclear matter is assumed
to have in each occupied momentum state four nucleons: two protons and two neutrons
with spin up and down. In this system possible charge symmetry breaking components of
v,y should have a negligible effect on B, ().

Let us introduce the following notation. By my,; and m, we denote the nucleon and A
momenta (in units of 2} of the occupied states, by Fy, k4 the momenta of the excited states,
and by Py, P, general momenta without any restrictions. In the ground state of the A
+nuclear matter system,

m, = 0. 2.4)

By sy, 55 we denote the z component of the nucleon and particle spin, and by #¢ the third
component of the nucleon isotopic spin. For the tet‘d set (mN, Si» ) we use the notation
My, and similarly m, = (M, s,). The notation: Fro Pros kA, P> has an analogical meaning.
Further-more, we denote by p the reduced mass of the AN system:

po= Mg MM+ ), (2.5)

where #y, # , are the nucleon and A masses divided by h2.
The binding energy of a A particle in nuclear matter, B, (o), is defined by:

—B(o0) = E(A+1,)—E(4), (2.6)

where E(A) and E(4+1,) are the potential energies of the ground state of nuclear matter
and of the system: nuclear matter- A particle. For E(4+1,) and E(A) we apply the
Brueckner theory expressions [7}:

E(A+1,) =} Z{mamad (g K(A +1) | mpgmyg—minging) +
+ 2} (g | [ g ), @2.7)

E(A) = § 3 {mymng (gring K(d) | ingimag—mpgimy), (2.8)
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where K(A4 +1,) and & are the reaction matrices for NN and AN interaction in the A+ nu-
clear-matter system, and K(A) is the reaction matrix for NN interaction in a pure
nuclear matter. Subtracting the two expressions, (2.7), (2.8), we get:

—Bp(o0) = V+ Vg, (2.9)
where the single A particle potential is:
Va= {m} (mampl A |mymy) =} > {mysa} (’;LN';"A]')( ’;"ZN’;’A)s (2.10)
and the rearrangement potential:
Ve = 3 20 {mumag) (magmigg K(A + 1) — K(A) | mygmy — magimny).- (2.1

It has been shown in I how to calculate V, for a central AN interaction. The way of
caleulating Vg has been presented in [8] in the case of a central spin independent Serber NN
interaction. Here, we shall present the way of calculating ¥, and Vj in the case when both
the AN and NN interactions are of a quite general form, and in particular contain tensor
components. Otherwise, the way of calculating Vg, presented here, is simpler than that
presented in [8] where nucleons in the intermediate states were assumed to have nonvanish-
ing potential energies.

A. Calculation of V),

First let us write the equation for the AN reaction matrix X ":
(PP Al 1Ty ) = (PP Alvan!mnmmy) +
+ 3 thwka} (PP alvantacka) (bl o gy
X 1len(ma) + ¥ —enthn) —eaka)]; (2.12)
where &y, €, are the N and A kinetic energies, and ey(my) is the single nucleon energy of
the occupied state, my, in pure nuclear matter. Strictly speaking, instead of ey(my) one
should write in Eq. (2.12) the single nucleon energy, ey(my), of the occupied state in the
A+4nuclear matter system. However, the difference EN—eN is of the order 1/4 and its
effect on ¥, vanishes in the limit 4 — oo. As we shall see in Section 2. B, this difference
is the source of the rearrangement encrgy. Namely, in ¥y, Eq. (2.11), there is an extra sum
over my which introduces an additional factor A.
Notice the appearance of pure A and N kinetic energies in the intermediate states in Eq.

(2.12), explained in detail in 1. As far as the single nucleon energies, ey(m,) are concerned,
we treat them as known quantities. Similarly as in 1 we use the form,

ex{my) = my[2.45+ Ay (2.13y

with the two constants, ./{;;, Ag, fixed by the two conditions:
Fentenday = —&or (2.14)
enlkp) = —&yop (2.15)
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where the subscript Av indicates the average value in the Fermi sea, and &, is the binding
energy per nucleon of nuclear matter.

When we change the sy, s, representation into the s, m, representation, where s is the
total spin of A and N, and m, is its z component, Eq. (2.10) takes the form:

Vi =D, {mysm} (myumysm )| imym,sm). (2.16)

For a charge symmetric AN interaction the % matrix does not depend on ty, and the sum
over ty cancels the factor 1/2 in Eq. (2.10).
Because of the conservation of the total momentum and of the total spin s, we have

(DNPAS T H [ Mgy sm) = 0,0 pp (P, | A | masmy), (2.17)
where the center of mass momenta ,P, M, and the relative mementa, p, m, are:
P=py+pr M=my+tmy=my, (2.18)
P = (M \Px— AP M+ M ),
m = (MM — M) (M + M ) = pany| M. (2.19)

The 2 matrix element on the right hand side of Eq. (2.17) depends on the center of
mass momentum M. Since, however, m, == 0 the center of mass momentum M is determined
by the relative momentum m:

M = 4 ym/p. (2.20)

Consequently, in our notation we do not indicate the dependence of " on M.

So far all the states have been normalized in the periodicity box of volume £, e.g.
(rim) =exp (irm) /V!j Now it is more convenient to use the normalization {r|m) = exp
(irm). With the new normalization we have:

(psme| A |[msm,) = !% {psm;| A |msm,), (2.21)

and Eq. (2.16) (with the help of Eq. (2.19)) may be rewritten as:
1\3 /s \3
Vo= (%) (_Ii) [ dm Z (s} (m, s, (2.22)
m<pkp[HN
where
H(m, s) = D, {m I msm|H |msm.). (2.23)

To determine the & matrix we follow the usual procedure [7], and introduce the AN
wave function ¥:

Himsm) = v\ ¥ ome?- (2.24)
Eq. (2.12) implies the following equation for ¥(r) = (@ ¥):
P o E) = €™ () + [d1 G (1, 1 )0 A E o (1 E)s (2.25)
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where £,,, () is the spin function of the AN system. The Green function G,,,, when expanded-
into spherical harmonics, takes the form:

Gl ) =Y {8} ( ZM) Gl 1) Yioli#), (2.26)

with
, 1 [, = Cr Nef
Culr, 1) =55 / dpp*Q(m, p)j pr)j( pr')|[2(m)—p*2ul. (2.27)
where
u/fN lfl«2
z(m) = en(m) + Va—M¥2(Mx+ M) = ex(mx) +Vr— T o (2.28)
and where the Pauli principle operator
0 fOI' P < kF—~.//{Nm/./lA,
— 1 for > kgt M| M,
Q(m, p) = P> byt Mo A (2.29)

[( p+ .//f;;m ) 2— k%] ‘ / [4(M /M AYmp] otherwise.
A

Actually, Q is an angle average of the exact Pauli principle operator, Q. The approximation
Q = Q is necessary to make Eq. (2.25) rotationally invariant.
Now we expand ¥ inio partial waves:

Y sma7E) = Z {Jir }[4»7:(2l+1)]y2z (Isom, |Jm)ufs(m, r) Y,J,’s"’(ﬁﬁ, 5,

where Yi™s are eigenfunctions of the angular momentum (1), spin (s), total spin (J) and its z
component (m;). Notice our notation for the radial functions u{’, which differs in the order
of the indices /', [ from the notation of [7]. From Eq. (2.25) we get the following equations
for the radial functions u:

uli(m, r) = j(mr),,+4m D {U"} f ar'r'2Gh (r, Wl (s dm, '), (2.31)
0
where
Vi) = f drdeYimi(r, v VI (7, ). (2.32)

If we replace the hard core of v,y by a hard shell of the same radius r,, we may get rid
of the product vu in Eq. (2.31), which, inside of the hard core, takes the indeterminate form
ox0 [7), [9]. Namely, instead of Eq. (2.3)) we get:

uls(m, r) = s;(m, r)6,+4m D {I"} f dr'r2FL (r, 1Yol r ) uls(m, 1), 2.33)
where

silm, 1) = jymn) —jmr) Go(r, 1| Gplrs 1) (2.34)



345

is the solution of Eq. (2.31) in the case of a pure hard shell interaction, and where the new
Green functions,

FLr, 'y = GL(r, r')—GL{r, 1)GLir,, r)Gofr. T.). (2.35)
When we insert the expansion (2.30) into Eq. (2.24) and calculate #(m, 5). Eq, {2.23),
we get:
A(m,s) = Z {m} {msmlv ANPF,,,,,,,S)

= (%) Z {(sJI} (2] +1)4m f drr¥jy(mr) vir(r)upi(m, 1), (2.36)

[

or finally:
3 .
+4n D {1} fdrrzs,(m, N uiy (m, r)] . (2.37)

To calculate ¥, we must first solve equations (2.33) for the radial functions u, next
calculate X (m, s), Eq. (2.37), and finally apply Eq. (2.22). Obviously, there is a self-consis-
tency problem. Namely, the Green functions G, and consequently the modified Green
functions F!, which appear in equations (2.33) depend on ¥, as is seen from Eqs (2.27-28).
Thus we have to assume a certain input value of ¥, which we denote by —A4,. This quantity,
A,, determines the gap in the single A particle spectrum. The calculated value of ¥V, is
a function of the assumed value of 4. By repeating the whole calculation for a few values
of A, we may determine this function, ¥V = V,(4,). The self-consistent value of ¥, is
obtained from the condition:

Valdy) = — 4, (2.38)

For the sake of completeness let us write the expressions for of3 for our AN potential

vans Eq- (2.1). We have:
vp(r) = OpvE(T),
vli(r) = 8 PvE(R) + BJU+ D — 310 +1) 1 oEs(n) +STpER), (2.39)

where the superscript + (—) has to be used for even (odd) values of I and I'. The only non-
vanishing matrix elements, S7,, of the tensor operator are [10]:

-1, 11 = —20—DJ2J+1),
Sf,] =2,
S7e1, 71 = —2J+2)[@T+1),
Sho17o1 =S4, y41 = S[JT+D]#2T +1). (2.40)
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B. Calculation of Vpg.

To calculate the rearrangement potential according to Eq. (2.11) let us first write the
equations for the NN reaction matrix K(4):

K(A) | nride) = vaonl i) + 2 {ndeia}onane Fneoie) X
1 .~ & ~
X — (el K(A) mniins) (2.41)
where vy is the NN interaction, and

a = ex(my) +ex(my) —exlkn) —enlky)- (2.42)

Notice that similarly as in Eq. (2.12) we use pure kinetic energies in the intermediate states.
This considerably simplifies the calculation of V.

The equation for K(A4+1,) looks exactly as Eq. (2.41) except that in place of o one
should put

a@ = ex(myg) +ex(my) —exlr) —en(k), (2.43)

where the single nucleon energy in the A+nuclear matter system, ey(my), differs
from ey(my) predominantly by:

ex(myg) —ex(my) & (mymy| o |mygmny). (2.44)
From Eq. (2.41) and from an analogical equation for K(4+1,) we get:
[K(A4 +14)—K(A)]Ining) = 25 T} K(A4) [oxckiie) X
1 1 - o ~ o~y
X [—&_ - —} (x| K(A +15) | inem) -

a

As explained in [8], we replace on the right hand side of Eq. (2.45) K(4+1,) by K(4),
make the approximation:

1 1 1\? . ,
2t a (1) e+ e, (246)
and apply the approximate equation (2.44). In this way we get:
(el K (A +1a) — K(A) ity —inkeinn) = — X5 (hakae} (nsiingel K(4) o) X
12""" ~ o~y ~p o~ ~ o~ ~ ~ A~ ~y o~
X (—a") (excn| K{(A) | mnming— i) [(anma| A |[minma) -+ (fnmal o lmama)l, — (2.47)
and with the help of Eq. (2.11) we obtain:
~ ~ ~ [1)\?
Ve=— Y. {iitkFakie} (anink K i) (-—) X
a
X (ke K narivy — i) (inmal o |fma)s (2.48)

where from now on we denote K(A) simply as K.
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If we introduce the total spin s of the two nucleons N, N’ and its z component m,,
and also the total isotopic spin T of N and N’, we may transform Eq. {2.48) into

-

Vo= —2 ) (mamienkiamm. 5} QT+ 1)(1a)2i(Renliesrm, T K Imymiesm, T) 2
X (1/4) D] {sasn} (MpMsys ol [myamysys ). (2.49)

The factor 2 in front arises from the exchange term (obviously all the two nucleon states
must be antisymmetric under the exchange of their spatial, spin and isotopic spin coordinates).
Notice that K does not depend on the third component of the total NN’ isotopic spin,
similarly as %" does not depend on ty. Since V' does not depend on s,, we have introduced
an additional summation § 3} {s,}. Since D] {s,}(|2"|) does not depend on sy we have
introduced one additional summation more, nemely 4 Z {sn}-

Now, let us introduce the NN wave function @:

Kimymysm,T) = |@F, ), (2.50)
and the NN difference function:
L imngmigimy) = | Porepemigim) — M gsm, T). (2.51)
Now, Eg. (2.4-1) implies the relation:
(kaN§ me TIK [ Mgy i, T) = (Reneiss iy T Fanpqmigime)s (2.52)
which in turn leads to:
1 _ o
Z {lenderms} ( ) i(knkys m TIK s m, T) 2
1 T .
=57 | rdnlmm @ 93 (2.53)
where we have introduced the relative momentum of the two nucleons,
n = (my—my)/2, (2.54)

and where # denotes the spin variables of the two nucleons. As in Section 2. A we use the
notation x(r) = (rlx) and similarly @(r) = (r|®@). By r we denote here the relative posi-
tion vector of the two nucleons.

With the help of Eq. (2.53) we may write the expression (2.49) for the rearrangement
potential in the form:

V= — g% Y (mami T RT+1)(@25+1)x

X f drdn|yk (7"'7)|2 2 {sASN MMM pSNS Al | My MpSNSA), (2.55)

where

: 1 — ‘
AP = 5 Y (Rl DI (2.55')
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Now, we take advantage of the weak dependence of the wound integral, [drdy|y|2,
on the nucleon momenta, and approximate the wound integral by its average value in the
Fermi sea:

[ drdylyer, n)2 = (fdrdylyl @, 9)2a,
= [ dmydmy [ drdnlyl3, n)|2] [ dmydmy. (2.56)
With the approximation (2.56) the summation over the nucleon momentum M, in Eq. (2.55)
concerns the X" matrix elements only, and gives 3V, according to Eq. (2.10) (the factor

1/2 comes from the summation over ty), and the sum over my produces simply the factor A/4.
Thus we may write:

VR = _"V;\v (2.57)

v=o ¥ (g ETENEHD ( f ardnln, ) (2.59)

where g = A[Q is the density of nuclear matter.
If we expand the NN wave function @ into partial waves (similarly as we have expanded

the AN function ¥ in Eq. (2.30)):
oL (r, 1) = X (I} An(2l+1)] % (Isom | Jm,)REy(n, 1) YiRe(nF, n), (2.59)

where

we gel
f drdrjiga (v, I = «23% Y e+
X [ drr2 (R} (n, 1)— Suja(nr)]2. (2.60)
In the case of central NN forces,
R{i(n, 1) = 8y R(nr), (2.61)
and we get:
[ drdylz5m, )i = da X {BRI+1) [ dr?[Ri(n, )—ji(nn)]% (2.62)

The last equation may be put into another form. Namely, in the case of pure central NN
forces,

BL (s 1) = gL, (), (2.63)
s 1) = X Mz, (0), (2.64)

where ¢ is the NN spin function, and
1) = i) —[e™", (2.65)

where the superscript T5 at the plane wave denotes, e.g., for T = 1(0), s = 1 only the odd
(even) parity part of the plane wave. (Notice that the summations in Eqs (2.59-60, 62)
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run only over states antisymmetric under the exchange of all the coordinates of the two
nucleons.) Consequently, we may write for s:

e=o| Y 9 ETNEED. [ (2.66)

AV

where the subscript Av denotes.the average value over the Fermi sea. This is the equation
for % quoted in I which is valid in the case of a pure central NN interaction only.

3. The AN interaction

At the moment we know very litile about the tensor component of the AN interaction.
One may either introduce it in a purely phenomenological way or deduce it from a field
theoretical model. An example of the first approach is the modified Herndon and Tang
(MHT) potential of Schrills and Darley [11], and of the second approach the one-boson-
-exchange potential (DP) of Downs and Phillips [12].

Schrills and Darley simply add to the potential F’ of Herndon and Tang [4] a tensor
interaction of varying strength and range. The range is always shorter than the range of the
potential F' (see Section 1.) .In the notation of Eq. (2.1) the MHT potential is defined by:

for r<<r
1,1 — i c?
v, (r) {___ Uose—l(r—rc) for r> T,
Yoz () = ¥y (),
- for r<r
3,,+ — o0 c?
[ (r) {_ Ume—l(r-rc) for r >r,

irn oo for r<r,
v () = {—5[]0,6_17"('—") for r>r,,

Sy (1) = y3f (), v (1) =y (1),
vgs(r) = vrs(r) = 0.

The values of the parameters are: U, = 921.6 MeV, U, = 828.5MeV, A = 4.427 fm™1,
r, = 0.6 fm. The parameter y measures the odd angular states suppression, and should
be equal about 0.6 according to [4]. For the sake of comparison we have calculated B (o)
for y = 0.6 and also for ¥ = 1 (no suppression). Schrills and Darley consider several values
of Ay and 4, and calculate the corresponding values of the Ap triplet S scattering parameters:
the scattering length, af, and the effective range, r¥ (see Table I). The singlet S Ap scattering
parameters, a?, r?, of all the MHT potentials are the same as in the case of the F’ potential.
In calculating the Ap scattering parameters, the charge-symmetry breaking component
of the potential F* has to be included into v,y . Inthe present work we have calculated B, (o)
for all the values of 2 and 6 considered in [11].

The DP potential has been derived by Downs and Phillips {12] under the assumption
that the AN interaction may be described with the help of the exchange of the following
bosons: 7 (pseudoscalar, T = 0), K (pseudoscalar, T'= 1/2), @ (vector, T'=10), and a S
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particle (scalar, T'== 0). For the first four, the observed masses were used, for the S, a mass
of three pion masses was used. A variety of cases, (a)—(j), have been considered in which
the 7, K, w and K* couplings were fixed within the ranges suggested by SU; symmetry
and by comparison with the NN problem. The one remaining parameter, the coupling of S,
was then adjusted in each case to optimize the fit to the AN triplet and siglet scattering
lengths a,, a,. The early empirical values, a, = —0.5 fm, a, = —3 fm, have been assumed.
The potentials (a)—(j) contain central, tensor, and spin-orbit terms. The charge-symmetry
breaking component has been omitted. A feature of the potentials is the soft central core
provided by the w. Actually an additional spin independent hard core of radius r, = 0.3 fm
has been introduced to remove singularities in the noncentral potentials. The resulting Ap
scattering cross-section was in a reasonable agreement with the early experimental data.
No calculations of the hypernuclear binding energies have been performed with these
potentials. The lengthy expressions for the DP potential are given in [12].

4. Results and discussion

The present calculations have been performed for kp = 1.35 fm~! which corresponds
to the spacing parameter ry == 1.12 fm. In fixing the single nucleon spectrum, Section 2.A,
we have used the value of g,,; = 15.8MeV for the coefficient of the volume term in
the semi-empirical nuclear mass formula. This leads to the values: .y = 0.393 4y,
Ay = —112.0 MeV, and Eq. (2.13) may be written as:

en(my) = 52.76 my; — 112.0, 4.1

where ey is given in MeV and my in fm~L. The corresponding gap in the single nucleon spec-
trum is:

Ay = eglkp)—eyn(kg) = 53.6 MeV. 4.2)
As has been shown in I, relevant in our calculations is the average value of ey in the Fermi sea,
(exday = — 2~ (3/)elhy) = —54.3 MeV, (.3)
for which the corresponding value of the gap is
{Aay = exlkp) —<{exPay = 92.1 MeV. (4.4)
The gap in the single A particle spectrum is:
Ay = —V,, (4.5)

where ¥, is the self-consistent A particle potential. The total gap, 4, in the single nucleon
and the single A particle spectrum ie:

A= A+4,. (4.6)

In calculating Vg, Eq. (2.57), we have used the value of » = 0.1, discussed in I. All

the values of B,(c0) obtained in the present paper contain the rearrangement correction, Vg.
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The computational procedure and all the meshes of the present calculations have been
the same as in I. All states with { << 2 have been included in our calculations, i.e. we have
considered the following states of the AN system: 1Sy, Py, 1D,, 3Py, 3D,, 3P, 35,+3D;,
8P,(+3F,), 3Dg(+3G,). The I > 2 states in the parentheses have been neglected. Conse-
quently, the only really coupled state in our calculations is the 35;+3D; state.

The results for B,(o0) obtained with the MHT potentials are shown in Table I which
also shows the contributions to B,(o0) of the AN interaction in the singlet (B}) and triplet

TABLE I

Results for By (o), Bj\, B3, obtained with the AN potentials F’, MH T, H, and the parameters of these potentials.
All energies are given in MeV, lengths in fm, and 4, is given in fm™*

y=1 y== 0.6
VAN § Ap —a? r? —a? r?
¢ * BY, BY Ba()| By B% Ba(w)
F 0 1.44 3.79 26.6 14.7 41.3 20.3 12.2 32.5
MHT1 0.12 4.76 29.3 14.5 43.8 22.9 12.0 34.9
MHT2 0.16 5.54 1.72 3.40 ] 29.4 145 439 23.0 12.0 35.0
MHT3 0.20 6.22 29.5 14.5 #4.0 23.0 12.0 35.0
MHT4 0.16 4.57 32.0 14.3 46.3 25.5 11.8 37.3
MHTS 0.20 5.15 2.08 3.08 32.2 14.3 46.5 25.6 11.8 374
MHT6 0.24 5.67 32.2 14.3 46.6 25.7 11.8 37.6
2.29 3.05
MHT7 -0.10 4.52 29.1 14.5 43.6 22.7 12.0 34.7
MHTS8 —0.14 543 1.72 340 29.2 14.5 43.7 22.8 12.0 34.8
MHT9 —0.18 6.21 29.2 14.5 43.7 22.8 12.0 34.8
MHAT10 —0.14 4.52 31.6 144 46.0 25.1 11.9 37.0
MHTI11 -0.18 5.20 2.08 3.07 31.8 14.4 46.2 25.3 11.9 37.2
MHT12 —0.22 5.78 32.0 14.4 464 254 119 37.3
H 0 2.08 3.40 225 3.29 34.8 14.4 49.2 27.6 11.8 394

(B states. For a few typical MHT potentials the contributions to B,(oo) of all the partial
waves are shown in Table I, together with the values of the self-consistent single A particle
potential, ¥,. Both Tables I and II contain also the results obtained with the charge-symme-
tric part of the best potential H of Herndon and Tang [4], fitted to B,(3H,), BA(*H,),
B,(*He,), and to the Ap scattering. The hard core of the H potential, r, = 0.6 fm, is the
same as that of the F' and MHT potentials.

As may be seen from Table II, for fixed values of a? and r? the calculated values of
B,(o0) almost do not depend on the particular choice of the values of & and A;. There is
only a slight increase in B,(0) with increasing Ay, i.e., with decreasing range of the tensor
potential. Furthermore, the resulting values of B,(o0) for the corresponding positive and
negative values of &, i.e., for attractive and repulsive tensor forces, are very close to each
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other. This is what one should expect because the contribution of a weak tensor AN force
to B,(eo) is essentially a second order. effect.

A look at Table 1I shows that by suppressing the interaction in the odd angular momen-
tum states (changing y == 1 into y = 0.6) we reduce B,{0) by a substantial amount. At
the same time, however, the contributions to B,() of the even angular momentum states

TABLE II

Partial wave contributions to B, (e0) and the self-consistent values of ¥y, in MeV, for the AN potentials F’, H,
and some of the MHT potentials

VAN y 38§,4-2D; 3P, Dy 3P, Py D, 1§, Py 1D, BA'(°°) —Va=dp
P 1 135 69 04 14 41 03 94 50 03 413 459
0.6 149 27 04 05 1.6 03 99 20 03 32.5 36.1
MHTL 1 159 65 04 05 57 04 93 50 03 438 487
0.6 174 24 04 01 23 04 97 20 03 34.9 38.7
VTS 1 161 66 04 07 54 03 93 50 03 4.0 488
0.6 176 24 04 02 22 03 97 20 03 35.0 38.9
MHTS 1 184 62 04 02 65 04 91 50 03 463 515
0.6 199 23 04 -01 26 04 96 20 03 37.3 414
MHT6 1 186 63 04 05 61 04 91 50 03 46.6 51.8
0.6 202 23 04 00 24 04 96 20 03 37.6 417
1 181 79 04 29 24 02 91 50 03 46.0 51.1
MHTIO | 46 197 29 04 12 07 02 96 20 03 37.0 412
. 1 185 74 04 27 27 02 91 50 03 46.4 51.5
MHTI2 | g6 200 29 04 11 09 02 96 20 03 37.3 415
1 187 85 05 1.7 51 04 86 55 04 49.2 54.7
H 0.6 203 36 05 07 21 04 91 23 04 39.4 438

increase. The reason for this is the self-consistency imposed on our calculations. The X
matrix for even states obeys the same equations for y = 1 and y = 0.6, except that the
gap in the single A particle spectrum, 4,, and consequently the total gap, 4, is different
in the two cases. Typically, A decreases by about 10 MeV when we change y =1 into.
y = 0.6. Now, a decrease in the gap A produces an increase in the effective AN interaction,
the o matrix. This is the reason for the increase in the contributions to B,(eo) of the even
angular momentum states. It is a manifestation of a general feature namely, that the self-
consistency stabilizes the resulting values of B,(c0) against changes in v,y

When we compare the results obtained with the potential F” and the potentials MHT4-6
(and also with the potentials MHT10-12) we notice that by adding a seemingly small tensor
interaction to the central potential F’ we increase the value of B,(e0) by about 5 MeV.
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Because of the similarity of the A+ nuclear matter system and the 5He, system one
would expect a similar increase in B,(He,), contrary to the suggestion made in [11]%.
Compared to our results, the perturbational estimate of the contribution of the tensor force
to B,(oc) of Ranft [13] seems to be surprisingly small, though it has been obtained with
a different AN potential.

Now let us discuss the tensor suppression effect. First let us notice (see Table I) that,
except for small difference in the value of 1%, the potentials H and MHT4-6 (and also
MHT10-12) are essentially equivalent in the problem of the low energy Ap scattering. The
difference between the potentials H and MHT4-6 consists almost in entirely in the presence
of the tensor component in the potentials MHT4-6. Thus, by comparing the values of B ,(o0)
obtained with the potentials H and MHT4-6 we may estimate the tensor suppression effect.
As it is seen from Table I, the value of B,(oc) obtained with the potentials MHT6(4) is
smaller than that obtained with the potential H by Dy = 2.6(2.9) MeV for y = 1, and by
Dy =1.8(2.1) MeV for y = 0.6. The quantity Dy may be considered to represent the
magnitude of the tensor suppression effect. When we go from the potential MHT4 to the
potential MHT6 (this corresponds to reducing the range of the tensor force), the value
of Dy decreases by an amount of 0.3 MeV.

Notice that our values of B,(o0) have been calculated self-consistently, i.e., each value
of B,(e0) has been caleulated for the corresponding self-consistent value of —F, = 4,.
Within a linear approximation {certainly valid for 40 MeV < 4, << 55 MeV), we have for
the potential H the following dependence for B,(o0) as a function of 4,:

By(co; Hyy = 1) = —0.21 4,+60.6, (4.7)

where B, and A, are in MeV. For the self-consistent value of 4, = 54.7 MeV, we get
from Eg. (4.7) the value of B,(o0) of Table I. Similarly, we have:

By(oo; H,y = 0.6) = —0.20 A, +48.3. (4.8)

To see what would be the magnitude of the tensor suppression effect, if we had not
imposed the self-consistency requirement on our calculations, let us caleulate B (oo H, ¥)
with the help of Eqs (4.7-8) for the self-consistent values of the potentials MHT6, MHT4,
shown in Table II. Let us denote by DY the difference between these values of B,(co; H, y)
and the corresponding B, (o) values for the MHT6 and MHT4 potentials, given in Table I.
Thus, D} represents the magnitude of the tenscr suppression effect in the case when the
self-consistency is disregarded (see Fig. 1 which shows an analogical situation in the case
of the contribution of the 3S;+ 2D, state to the tensor suppression effect). In this way one
obtains for the potential MHT6(4): D$ = 2.8(3.1) MeV for v = 1, and D} = 2.3(2.6) MeV
for ¥ = 0.6 (see Table I1I). A comparison with the corresponding values of D shows that
the self-consistency requirement deminishes the tensor suppression effect by 0.2-0.5 MeV.

Notice, that Dy(y = 1) is larger than Dy(y = 0.6) by an amount of 0.8 MeV. This
clearly indicates that the interaction in the 3P states is important here, as may be seen directly

1 Actually, the increase in B,(*He,) might be even more important because By(°He,) is determined
predominantly by the AN interaction in the S state, for which the tensor superession effect is small.
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from Table II. In this connection, it is worthwhile noticing that the expectation values of the
tensor operator in the 3P states are different from zero (in contradistinction to the case of
the 3S state), and we have:

3P, 1 0¥ = 30 —4do],
3P, : vl = 3 +2;,
3P, : v} = 3 —(2/5)] . (4.9)

Thus for the separate 3P states the effect of tensor forces is a first order effect®. The situation
with the 3D states is similar, except that the contribution of the D states to B,(o0) is anyhow
very small.

When we look at Table II we notice that the contribution of the coupled 35, +3Dy state
to Dy is surprisingly small, being equal 0.3—0.4 MeV for the MHT4 potential and 0.1 MeV
for the MHT®6 potential (notice that here the dependence on the range of the tensor force
is more pronounced). Similarly as in the case of the total value of Dy, let us discuss the effect
of self-consistency. To see what would happen with the 35;+ 2D, state contribution to Dy
without the self-consistency requirement, let us write in a linear approximation (certainly
valid for 40 MeV << 4, < 55MeV) the dependence of the contribution of the 3S,+3D;
state to B,(o0) on the value of 4, for the three potentials H, MHT4, MHT6:

B,(3S,+3D,; H) = 26.11—0.1464 4, ,
BA(3S,+3Dy; MHT4) = 26.01—0.1485 4,
BA(3S,+3Dy; MHT6) = 26.54—0.1528 4, (4.10)

where all quantities are in MeV. By subtracting the last two of these equations from the
first one, we get for the contribution of the 3S,+2D, state to D for the two potentials,
MHT4 and MHTS,

DY(3S,+3D,; MHT4) = 0.71+0.0021 4,,,

DY(3S,4-3D,: MHT6) = 0.17+0.0064 4,,, (4.11)

where the superscript O denotes that the difference has been calculated without the self-
consistency requirement. If we insert into Eqs (4.11) the self-consistent 4, value for the H
potential® we get: Dg.(331+3Dx; MHT4) = 0.8 MeV, D;(351+3D1; MHT6) = 0.5 MeV.
We then see that the magnitude of the 35,4-3D, state contribution to the tensor suppression
effect increases considerably if we disregard the self-consistency (but keeping a reasonable

2 However, when we calculate the total contribution to B, (oo} of the *P states with the proper weighting
factors (1/9 for the 3P;, 3/9 for the 3P;, and 5/9 for the 3P, state) we see that in this total contribution the tensor
force does not contribute in first order. Thus the situation is similar to the 3S state, except that the contribution
to Bj(oo) of the tensor force in the 35, state is realized through the coupling to the weak 3D, state (similarly as
in thé AN scatering).

3 If we insert the self-consistent values of A, for the MHT4 and for the MHTG potentials, respectively we
get practically the same result for D}, Notice aiso that we get approximately the same result for DS whether
we use the self-consistent 4, values for the H potential in the case of y = 1 or in the case of y == 0.6 (see Fig. 1).
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TABLE III
The magnitude (in MeV) of the tensor suppression effect for the AN potentials MHT4, MHT6
, Dy Dy,
v
AN Total 35,-+-3D, Total 35,4-3D,
1 2.9 0.3 3.6 0.8
HT4
MHT: 0.6 2.1 0.4 2.5 0.8
1 2.6 0.1 33 0.5
MH:
Te 0.6 1.8 0.1 2.3 0.5

nonvanishing value of A4,). Our results for the tensor suppression effect are collected in
Table III. The relation between D5(3S,+3D,; MHT4) and D3(3S,+3D;; MHT4) is shown
in Fig. L.

As one should expect (see [2]). D}(3S;+3D,) increases with A4, faster for a shorter
range tensor force (MHT6) than for a longer range tensor force (MHT4). In the range of

B,(%s,+7D,) [ Mev]

Dy(y=06)

1 ! !
40 50 A, [Mev]

Fig. 1. BA(35;+°Dy) as a function of A4, for the AN potentials H and MHT4, and the values of D, and Dg..
The self-consistent points are: @ for y=1, and O for y = 0.6

validity of the linear approximation (4.9) the tensor suppression, D3(3S,+3D,), is larger
for the longer range tensor force (MHT4) than for the shorter range tensor force (MHT6).

Our discussion of the tensor suppression effect has been based on the assumption that
the potentials / and MHT4, MHTG6 are equivalent as far as the Ap scattering is concerned.
In fact, all the potentials have almost identical S wave Ap scattering parameters (and they
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have the same hard core radius). The importance of the 3P states in the tensor suppression
effect which we have found in our calculations might be partly connected with the fact that
the potentials H and MHT4, MHT6 may not be equivalent in the 3P states of an isolated AN
system. This point could be clarified by a comparison of the elastic Ap scattering cross-
-section obtained with the potentials H and MHT4, MHTG6 for energies where the P wave
becomes important.

Let us summarize our discussion. If we accept for the odd angular states suppression
factor the value y = 0.6, adjusted in [4] to the Ap scattering, we get for the magnitude of
the tensor suppression effect, Dy = 2 MeV. The most important contribution to Dy comes
from the AN interaction in the 3P states. The self-consistency condition reduces the value
of Dy which would be larger by about 0.5MeV without the self-consistency condition.
The value of Dy = 2 MeV is important in reducing the calculated value of B,(o0) towards
its empirical value. It seems, however, to be not sufficient to bring into agreement the
calculated and the empirically estimated values of B,(o0).

Recently, Goodfellow and Nogami [14] have calculated the tensor suppression effect
in nuclear matter to be less than 1 MeV. These authors put 4, = 0 or 40 MeV in their ¢
matrix equation, and use the triplet interaction of the tensor Yamaguchi form which acts
in the 3S; 43D, state only. Consequently, the result of [14] should be compared with our
values of D%(3S;+3D,) for 4, = 0 and 40 MeV. If we extend the linear approximation of
Eq. (4.11) to the value 4, =0 we get D}(3S,+3D,) = 0.2(0.7) MeV for the MHT6(4)
potential. For 4, = 40 MeV we have (see Table I11) the value of D}(3S; +3D,) = 0.5(0.8)MeV
for the potential MHT6(4). Similarly as in the present work, an increase in D} has been
noticed in [14] when 4, = 0 has been replaced with 4, = 40 MeV. Thus the results of [14]
are consistent with ours.

In a recent paper by Law, Gunye and Bhaduri [15] the tensor suppression effect in
5He, has been estimated to be small (about 0.5 MeV) for several AN potentials of the cut-
-off Yukawa type. In the calculation of the second order contribution of the tensor force,
the value 4, = 0 has been used. Furthermore, B,(’He ) is determined predominantly by
the S state AN interaction. Consequently, the result of [15] may be compared with our
value of D%(3S,+3D,) for A4, = 0, corrected for the difference in the average density of *He
and of nuclear matter. In this sense the results of [15] seem to be consistent with ours.

TABLE IV

Results for Bj(o0), BY, B4, B5(35;+3D,), in MeV, obtained with the one-boson-exchange AN potential
DP(j), and the scattering lengths of this potential in fm

VAN —a, —a, BA(3S,+3Dy) Bt B Ba()
DP(j) ~0.5 3.5 9.7 22.8 22.2 45.0

Now we would like to present our results obtained with the one-boson-exchange DP
potentials. Actually we have calculated B,(oc) only in the case of the DP potential (j) which
corresponds to the weakest w coupling. The results contained in Table IV show a compara-
tively small contribution of the 3S;+3D, state and a triplet states contribution to B,(0)
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of about the same magnitude as the singlet states contribution. However, the resulting value
of B,(o0) = 45.0 MeV is much larger than the empirical value, Eq. (1.1). The sizeable soft
core produced by the w makes the iterative method of solving the wave equation (2.33)
divergent in all cases of the DP potentials except for the case (j). According to our estimates,
the DP potentials with a strong coupling of the w, e.g., the potential (i), give a sizeable
negative contribution of the 35, 43D, state to B,(0), and one should expect to get for the
resulting B,(o0) a value close to the empirical estimate, Eq. (1.1). However, with the large
size of the soft core of the DP potentials with a strong @ coupling, the three-body ANN
diagrams, neglected in the present calculation, night be important. Furthermore it should
be stressed that the values of a, and @, of the DP potentials do not agree with the more
recent estimates.

Let us make the following final comment. The analysis of the tensor component in the AN
interaction presented in this paper, as well as similar analyses in other papers, is
a very incomplete one. What one should do is to adjust the whole AN interaction including
its tensor component to the binding energies of the light hypernuclei, to B,(o0), and to
the Ap scattering data. Unfortunately, it is extremely difficult to solve the problem of the
light hypernuclei with a realistic AN and NN interaction. The simplest case of the 3H,
hypernucleus seems to be comparatively less important in the analysis of the AN tensor
force since B,(3H,) is determined predominantly by the AN interaction in the singlet
state. Consequently, the contribution of a AN tensor force to B,(3H,) is expected to be small
[16]. More important in this respect seems to be the problem of 4H,, and “He , which, however,
is a four-body problem. Obviocusly, the difficulties increase tremendously when we consider
the heavier identified hypernuclei, in particular in the p shell. Thus, even without mentioning
some other effects {ANN forces, isotopic spin suppression) we certainly must realize that
at the moment we are in a very early stage of the phenomenological analysis of the AN
interaction.
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