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KINEMATICAL SINGULARITIES OF THE THREE-BODY DECAY
HELICITY AMPLITUDES

By J. Jurkirwicz

Institute of Physics, Jagellonian University, Cracow™®
(Received Aprill 11, 1970)

The kinematical behaviour of the three-body decay helicity amplitudes at the boundary
of the physical region and of the decay transversity amplitudes at the thresholds and pseudo-
thresholds is discussed. The three-body decay amplitudes possess the threshold and pseudo-
threshold singularities in s, ¢ and .

1. Introduction

The kinematical behaviour of the two-body scattering helicity amplitudes seems at the
moment to be a closed problem. Kinematical singularities of such amplitudes were dicussed
in a number of papers (¢f. Refs [1-6]). The most comyplete discussion was given in the study
by Cohen-Tannoudji, Morel and Navelet [6].

In our previous paper [7] we derived the crossing relations for the helicity amplitudes
between the two-body scattering channels and the three-body decay channel. We assumed
there that the analytic properties of spinor amplitudes allow such a crossing.

Using the results from this paper we discuss here the kinematical behaviour of the

three-body decay helicity amplitudes.
As in Ref. [7] the three-body decay channel reaction is

d: 01,2, 3,

the scattering channels reactions being

s:2,3-0,1
t: 3,1 50,2
u: 1,2—»0,3,

(mo > my+my-+mg).
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The obtained results are presented in Sec. 2, We collect there also the notation used in
this paper. Some examples of the three-body decay helicity amplitudes are given inSec.3.In
Sec. 4 we discuss the kinematical behaviour of the decay helicity amplitudes at the boundary
of the physical region. Qur method follows that of Ref. [6], that is we use the Joos expansion
of spinor amplitudes in ters of covariant polynomials [8-10] and study the terms singular
at the boundary of the physical region of thus obtained helicity amplitudes.

Sec. 5 is devoted to the discussion of the threshold and pseudothreshold singularities
of decay transversity amplitudes [11]. For these amplitudes the kinematical singularities at
thresholds and pseudothresholds are factorizable [6, 12]. The method makes use of the
crossing relations for the helicity amplitudes between the scattering and decay channels
obtained in Ref. [7].

The details of the calculations are given in the Appendices.

2. Results and notation

In this Section we present the kinematical behaviour of the decay helicity amplitudes
at the boundary of the physical region and the threshold and pseudothreshold singularities
of the corresponding transversity amplitudes. The notation used in these formulae is ex-
plained below.

The helicity decay amplitudes M,{f% 2 behave at the boundary of the physical

region as
B .. \|h—Athtil .. \h—hth—i]
MA,M,[. = (sin —2—3—) (Sin —.—31—) X
2 2
B, \ = k= tat |
X (sin %) R(s, t), (2.1)

where R(s, t) is kinematically regular at the boundary of the physical region. Angles 6
are the angles between the three-momenta of i-th and j-th particles in the rest system of
particle 0. Analytic expressions for sines and cosines of these angles are given below (for-
mula (2.7)).

Formula (2.1) means that

Va;u,—l,ﬂ.w.l when 0,5 — 0; 05, 0,5 — 7,
Miu,,a. ~ Vall.—’-n”'-“"t‘ when 0y — 0; 0,5, 63 — 7, 2.2)
ﬁf%—‘x_li"ﬂtl when 0y — 0; 0,3, 05, > 7.

Here ®(s, t) = 0 is the boundary equation of the physical region (Ref. [6]). Inside this re-
gion (s, t) > 0. We choose here the positive determination of VQT

The method used to obtain formula (2.1) will be sketched in Sec. 4.

To describe the kinematical behaviour of the amplitudes at thresholds and pseudothresh-
olds we use so called threshold and pseudothreshold functions (¢f. Ref. [6]).

Poi) = [r—(mo+m)?%,
oi(r) = [r—(mo—m))? % (2.3)
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where r = s, t, u for

i=1, 2, 3.

On the physical Riemann sheet functions @q(r) and (r) are positive for big positive real

r. In the decay channel these functions are purely imaginary positive and the functions #(r)
defined by the formula

Roi = Poil7) Vil 24)
where =%, 7, U
r=s,t,u for
i=1,2, 3 correspondingly,
are real negative.
In terms of these functions we express the kinematical behaviour of the decay trans-
versity amplitudes. We find that the transversity amplitudes T¢ behave like

T1TaT3, %)

T.Z TaTy,T, 7)01(5) - su(‘ro— 11)"/)01(3) —ey5(Ty+ %) %

X @oalt) go(1) ™ e Tipog(u) uTspog(u) ~ ot

= Pt Por(s) )eutl ( Poat) )e"t' (‘Po3(u) )E"T‘
Yo ( Yoi(s) Poolt) Yoalw) : (2.5)

In these formulae ¢;; = 1. The meaning of these symbols is given below (formula (2.8)).
The derivation of Eq. (2.5) is given in Sec. 5.
For practical calculations we use here the rest system of particle O (the system in which
Po = (my, 0,0, 0)). .
The following notation will be introduced: w,; and k; are the energy and the three-
-momentum of i-th particle (i = 1, 2, 3). In our convention all the 75,-’5 lie in the xz plane.
In the rest system of particle 0 w; and k; are

N 2 2
0i = G (b mf ),
A 9?01'
L: - Zmo > (2'6)

where r=s, t, u, an &, is defined by Eq. (2.4).
The angles 0,5, 8,5 and 83, are the angles between %, k, and k, (Fig. 1). The cosines and
sines of these angles can be expressed by the Mandelstam invariants in the following way

_ L23 . _ 2m0 V@T
T Tt T Tty
Ly Lo 2mg @
T T T Ay
. L12 . . 2mo l/ qj
COf 012 = yorg,oz N s1n 012 = 701.7'—02—’ (2.7)
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where the numerators L,; in the expressions for cosines of the decay angles are

Lyg = (¢ +mg —m3)(u+mg—m3) —2mg(mg +m; —mj —m3),
Ly = (u+m§—m3)(s +mg —mi) —2mig(m+m —m? —m3),
Lyp = (s-+mg—m3)(t +mg —mg) —2mg(me +m§ —m} —ms). 2.7

The signs ¢; of these numerators

2.8)

&; =sgn L

are the functions of the Mandelstam invariants.

—
k2

d

x

—
ky

Fig. 1. Decay angles in the rest system of particle 0

Our definition of helicity frames is taken from Ref. [7]. For particle 0 we choose the
helicity axis to be parallel to %; (in the rest system of particle 0). For all the particles the y

axis is orthogonal to the reaction plane: y || —(Fy X Foy)-

3. Examples

In this Section we discuss the possible applications of formula (2.1).
Our first example is the 37 decay of the natural parity meson V with the spin sp.

V - 3.

The parity conservation condition for the three-body decay helicity amplitudes reads

S(sit+AD
My, 5 = (=17 “-"Miil—i,~).,,—l.’ 3.1
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where 5 = 74147905 is the product of intrinsic parities. This condition is analogous with the
corresponding conditions for the two-body scattering helicity amplitudes (cf. Ref. [6]) and
follows directly from the crossing relations between the scattering and decay helicity ampli-

tudes [7].

For meson ¥V 5, = (—1)*%, we have the following parity conservation condition for
the amplitudes an

M = (—DPv*siME, = (=1erine, 3.2)
This means that for 1, =0
Mé= —Mi=0. (3.3)
Using the formula (2.1) we find that
M, ~ Y@ (3.4)

and therefore (3.3) all the amplitudes vanish at the boundary of the physical region.
That is one of the well-kknown Zemach rules {13]. The other Zemach rules follow from
the exchange symmetry of the final states.
The second example is the reaction

+ +
&) 2] oo

Following Jackson and Hite [5] we take the general form of the amplitude to be
M = @(py) {[Al—iy (32;”—) BIJ (Ps—pou-t

+ [Az‘i?’ (Es_;ﬁ) Bz] (Ps"‘Pz)u} vsU*(po)> (3.5)

where U¥(p,) is the Rarita Schwinger wave function for particle 0 and u(p,) is a Dirac spinor
for particle 1. The Dirac notation used here is analogous as that used in Ref. [S].

The helicity amplitudes are constructed by choosing the definite helicities for particles
0 and 1 in the rest system of particle 0. In order to simplify the kinematics we assume that
particles 2 and 3 have the same mass.

After the reduction we get

V2 @
Po1(5) Por(s)® !

2V D - -

leI”xlz — ZV qu [A . (mO ml) (t U)Bl] s

M_l/z: a/ﬂ =

*

Por(s) pals)® 2
Vo | 2 2 (3mg(mg—my) +wpi(s)%) (t—u)
M_y ZAL_V_ﬁlx_l/__A < o\ 1 01 B
o'l Por(s) 37t * 3 MY ()2 2 1t

2
o ~1: Por(s) B,
Ve mg ’
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: 2 (s+m§—md) (t—u)
i/ i o
ol 1/3 Mg Po1(s) 2 b

1 90(S) Yor(5)® l/E 1
s LA A P | D —
+ Vg My ? 3 Poils) you(s)® [

(g —my) (s-+ m—m3) (t—u)z]
B,—
My 4

- 1/%— o) g9 432 1), (3.6

Formula (2.1) gives in this case the following behaviour of the three-body decay helicity
amplitudes at the boundary of the physical region

Mill‘ ~ V¢T [Ao— A4 (3.7)

which agrees with formulae (3.6).

For this case we can also check formula (2.5), that is the threshold and pseudothreshold
behaviour of transversity amplitudes. Transversity amplitudes can be expressed as linear
combinations of helicity amplitudes with numerical coefficients [11] (¢f. Sec. 5).

For this reaction the non-vanishing transversity amplitudes are Tii[” oy T iy Td_,,u,,.
and Tff_./”__./.. The threshold and pseudothreshold behaviour of these amplitudes agrees
with (2.5). The singular points are s = (mgy+my)2

Using Eq. (3.6) we obtain the following threshold and pseudothreshold behaviour

T4, ~ Porls)™ porls)2,

Tf-‘/,; 1, ™~ Por(s)™

Tg/.;—‘/. ~ @oi(s),

T =, ~ Par(®) Porls)? 3.8)

which can be compared with the behaviour following from (2.5)

Ti, %~ Porls)” (o= Wygy (s) ™o, (3.9

4. Kinematical singularities at @(s,t) = 0

We use the definition of the decay helicity amplitudes from Ref. [7], that is, we express
these amplitudes in terms of the spinor amplitudes. The spinor amplitudes enjoy some
important analyticity properties. We recall here the Joos expansion of the spinor amplitudes
in terms of covariant polynomials [8]. The coefficients in this expansion were proved by
Hepp [9] and Williams [10] to be free from kinematical singularities.

Using the Joos expansion of spinor amplitudes we write the helicity amplitudes in terms
of Joos invariant amplitudes (cf. Ref. [6]) and extract the part singular at @(s, ) = 0.
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In the frame where k; ||z amplitudes M2

1

Mg,;..z;,z, = > d™012) 4,~2,8"(—~03) 4, 3,(5in B10)"1 %
X (sin 631)|M'IF (s, t, u), (4.1)

i, €20 be written

where F(s, t, u) is kinematically regular at @(s, t) = 0. The summation goes over A,, A,,

M1 and M2 With
M, +M, = Ay—A+4,+A4,.

The terms singular at @(s, ) = 0 are sin(f;/2) and cos(6;/2) since D(s, t) =0 implies
| cos 6] = 1.

Using explicit expressions for d*(0)4; and some simple relations between cosines and
sines of 0,;/2 we find (¢f. Appedix A) the following behaviour of the helicity decay ampli-
tudes at the boundary of the physical region

0., \ b hticthl f.. \ ho—hti—Al 0. \Bo—h—itA
Mg~ (sin —213-) (sin —;l) (sin %) . 4Y)

The derivation of formula (4.1} is given in Appendix A.

5. Kinematical singularities at thresholds and pseudothresholds

We discuss the threshold and pseudothreshold singularities of transversity amplitudes
[11] since for these amplitudes the singularities at thresholds and pseudotresholds dre
factorizable [6, 12]. .

The transversity decay amplitudes can be expressed as linear combinations of helicity
amplitudes with numerical coefficients

Tg{r,‘r,,t, = D'(R)).,'r, I(R*)}anS’(R*)}.,t,DS'(R)} Mgll.,}.,,l

y (5.1)

Here R is a rotation through —z/2 around the first axis, . e. specified by Euler angles x/2,
nf2, —mf2.

The well-known property of transversity amplitudes is the diagonal form of the crossing
matrices [11]. The crossing relations for the helicity amplitudes between the two-body scat-
tering channels and the three-body decay channel obtained in Ref. [7] can be rewritten
for transversity amplitudes as

T4 e = (= D)F (D)7 %% exp [ —in(vy —Tp —Ty)] X
X exp [ —i(Taxs+Tax) T v —rims,
— (1P Lyt exp [ ity — T, — )] X
x exp [i(Toxo — 7121 —Tax3)] Tt—r,,—‘r,,—-r,—t,
= () (1t xp [ i~ ] X

X exp ["(Toxg —717(? —12:{;)] T'i-r,— Ty —T1— Ty " (52)
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In these formulae factor (—1)% (X = 0, 1) arises from the change of order of the indices in
the amplitudes and depends on the kind of particles involved in the reaction (¢f. Ref. [7]).
The crossing angles yx are collected in the Appendix of Ref. [7].

The amplitudes T“Zﬂa"s;‘to have threshold and pseudothreshold singularities in s, ¢ and
u. From Eq. (2.6) one can guess that the singular points are

s = (mgxtm,)?,
t = (mymy)?,
u = (mgtmy)Z

Since amplitudes 7% are not singular at ¢ and u thresholds and pseudothresh-

— =Ty, — T 1
olds, the singularities of T f;ztz;o ;t these points must be simultaneously the singular-
ities of the factor exp [—i(Tays+73x3)] from the s-channel crossing relations (5.2).

Analogous arguments can be made for s and u singularities using the ¢-channel crossing
relations and s and ¢ singularities using the u-channel crossing relations. Each singularity
at s, t and u thresholds and pseudothresholds appears thus in two independent crossing
relations. This is an additional test of our results.

The kinematical behaviour of the expressions exp {(iy) can be related to the behaviour
of exp (). The kinematical singularities of the latter are discussed in Appendix B.

The method used here is to find some combinations ¢ of the angles y and 6, such
that the expressions exp (ig) are not singular at certain thresholds and pseudothresholds.
This problem is discussed in Appendix C.

From these relations and using (5.2} we find the kinematical behaviour of the trans-
versity decay amplitudes at thresholds and pseudothresholds (2.5).

d &l T T 12l
Trirszye, ~ Por(s) el rl)‘Pm(s) )

X Qo) spoa(£) ~eesTapog(u) s Fstpga (1) ~ s

. —£147, 9901(5) )sxzfx ( <P02(t) )Gzafg ((poa(u) )e"r,
= (1/)01(5) WPoolt) Wos(l) : (5.3)

APPENDIX A

Derivation of formulae (2.1)

Using explicit formulae for d°(8)4; we can rewrite (4.1) to get

9 [ Azt 2]+ | M, 0 [Aa= 4|+ | M|
]\ﬂfms,;o = (sm ~§—2) cos %

B \IAsHAIEIM [ g\ LA AllA
X (sin _;1_) (COS —%L) F'(s, t, u). (A.])

X
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Since 015 +0,5+05 = 27, we can write the following identities:

b5 Brp . O 27 ¢ v iz O
0SS NN N  T T et Wy M g us
b1, Oas 021 2 U —ain Do o Oa
cos 5 = sin =5 sin 2 Pyt Tt Uy 2 T2 s
s LT 2%m o U O
cos - = sin— = =in D Gt Ty sin —5=sin TA%. (A.2)

Functions Ay, Ay, and Ay; are not singular at @(s, 1) = 0. Using (A.2) we can rewrite (A.1)
in the more symmetrical form:

X

9 z+'1=|+IMIE+|A:—l:|+|;‘v—)~1“|'A:+A;—M1|
d 12
M;,,;,sgv;,o ~ *»111 —-2—

s —z

2

( 0 )lA:_AZ|+|Ml|+1Aa+)'x|+Mn_;'l'l‘Ai“*‘As—Mll
X | sin —=

( 0,5 ) Ay ha My = [ Ay A A= At Ay Ay M|
X X
(A.3)
Let
A = Ayt Lo| + | M|+ [As — R3] + 1A =4y + Ay + A, — M|,
B = |Ay— Dol My | Ay i gy + Ao — Ay + Ay + Ay — M),
G = |y — Ao + | My + [Ay —2g| + Ao — Ay + Ay + Ay — M.
The minimal values of &/, # and € are
Fmin = |l —hy—hy-
Benin = Ao —A+
Cmin = Ao — M+ 2+ Ag].
All the other values of &, # and € differ from </ B

min®
integer.

min 30d F_; by even positive

Therefore the singular part of Mj,, , is
f “min Fmin f €min
Mg, s, ~ (sm —-;1) (sin %L) (sin ~22—3) . (A4)

APPENDIX B

The kinematical behaviour of exp(if;) at tresholds and pseudothre-
sholds

The following equalities between L, (formula (2.7')) can be easily derived (e = +1)
Lig(s = (my+emy)®) = —Ly(s = (mg+emy)?),
Loy(t = (mg-+emy)?) = —Lyy(t = (mo+emy)?),

Ly (u = (mg+emg)?) = —Lyg(u = (my+emg)?). (B.1)
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If we turn around the point s = (mg+m,)? the following changes occur

0,tm
" when Ly 20, Ly 0.
0y F 7

Turning around the point ¢ = (mg=m,)? implies
Optm
277 When Ly, 20, L,y S 0.
Oy F 70
Turning around the point u = (my+mg)?
0317

when Ly 20, Ly, 50.
Opa T

From these dependences we can deduce the kinematical behaviour of exp (i6;) at thresholds
and pseudothresholds to be

exp (ifyp) ~ Po1(5) P01 (5) ™ I @oa(t) pea(t)
exp (iflzs) ~ Poalt)™ " Woolt) ™ ““@oa(u) poalu)™,
_exp (i031) ~ Pos() ™ " Poa(1) ™ Po(s) pa ()2 (B.2)

The symbols ¢; and the functions @g,(r) and v, (r) were introduced in Sec. 2.

APPENDIX C

Non-singular combinations of angles

The kinematical behaviour of the expressions exp (iy) in (5.2) can be rclated to the kine-
matical behaviour of exp(ifl;).

Using explicit expressions for the crossing angles y from Ref. [7] we construct the com-
binations ¢ of these angles with the angles 6;; such that exp (ig) is not singular at certain
thresholds and pseudothresholds.

These combinations are presented in Table 1.

TABLE 1

Non-singular combinations of angles

@ not singular 2t
Bt s = (mo—emy)?
612‘*‘1:, s = (my+my)*?
2ut-exy s= {m,—em,)?
631“1'3 s = (my£my)*
012’1“37(; t== (my+emy)?
Oy5 ey t = (mg—t&my)?
031+ €X§ u= (my —emy)?
Ontert u= (mytemy)?

e= +1
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Using Table I and formulae (B.2) we find the following behaviour of the expressions
exp (i7)
exp [i(xo+ 1)l ~ orls)®»,

exp [i(xo—x0)] ~ wor(5)%=,

exp (ixz) ~ Poalt) ™ ypalt) ~"» = (iﬁig ) ”’
e i ~ ) uy &t = _9”03(”) )‘“
xp (ixa) ~ Pos(w) = yos(w) ( w——————os @) . (C.1)

In these formulae indices s, ¢, u for the crossing angles are omitted since, as it can be checked,
the behaviour of the expression exp (ix]) (r = s, ¢, u; i = 0...3) depends only on the in-

£5 122
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