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A method of evaluation of the absorption corrections by means of an expansion in a rapidly
convergent power series is proposed. The resulting formulae are straightforward and easy for
numerical calculations.

1. Introduction

In this paper we would like to propose a method of evaluating the absorption correc-
tions!. The idea is to expand the exact expression for absorption corrections into a power
series in a parameter which, at high energies, is equal to

[a;bs]“l. O

Here @ and b are elastic and inelastic slopes, and s the total c. m. energy squared.

The method provides a simple analytic expression for the absorption corrections, which
is quite accurate and very convenient for physical interpretation.

In the few BeV region the parameter (1) is already small and the convergence of the
series is very good. The first two terms give quite reasonable accuracy.

We think that our approach may be useful for the following reasons:

a) If the required accuracy is of the order of, say, one percent, the use of our method of
calculation would shorten considerably the time needed for the numerical evaluation of the

* Address: Instytut Fizyki UJ, Krakéw 16, Reymonta 4, Polska.
1 For a review of the different approaches to the absorption model calculations we refer the reader to the
recent paper by Henyey et al. (Ref. [1]). We follow the notation and use the formulae of these authors.
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absorption corrections. This may be of importance if (as usual) a fit with several parameters
is performed.

b) The physical interpretation of the results is much clearer from the analytic formula
provided by our method than, e. g., from the numerical results obtained in the computer.

c) The investigation of general properties of the absorption corrections, like e. g. their
dependence on the shape and strength of the interactions involved, is evidently greatly
simplified if a simple analytic formula is available.

d) Our results are much more accurate than those obtained in the eikonal approxima-
tion, although the formulae are of comparable simplicity.

In the next Section we introduce our notation and the kinematics. Section 3 is devoted to
the discussion of the scattering of spinless particles. The case of general spin is discussed
in Section 4. In section 5 we apply our formalism to the discussion of the forward dynamical
zeros of the scattering amplitudes. Our conclusions are listed in the last Section.

2. Notation and kinematics

An exact expression for the first order absorption corrections to an inelastic amplitude

M reads [1]
¥4
6MA’,4’; ll‘(z) = — —l—: dxd(pl [k'Mel(x)}.',u’;A"[l"Ml"#"i A (}’) +
32n2[/s

+EMyw; 3w () M I’l wes wul(y)] cos (hpg+h" @+ 1 ). 1)

Here the subscripts denote helicities. Thus e. g. M, . ,, corresponds to a transition where the
helicity of the first particle changed from A to A" and the helicity of the second particle from
1 to p'. z is the cosine of the centre of mass scattering angle. k£ and %'. are the c.m. initial
and final momenta, A is a multiplicative factor which, in some models, is left as a free para.

arccos z

arccos x arccos y

Fig. 1. Spherical triangle needed for calculating absorption correction

meter. M* is the amplitude for elastic scattering. M is the amplitude for the inelastic process,
but without absorption corrections. In practical calculations both M® and M are assumed
known. A = A—pu and analogous relations hold for A’ and A"’. The remaining variables y,
@, and @, can be obtained by solving the spherical triangle on the unit sphere, as shown
in Fig. 1. The integration extends over all of the unit sphere.

The formula (2.1) (with 4 = 1) is equivalent to the Jackson-Sopkovich prescription
for absorption, provided the elastic phase-shifts in the initial and the final state are identical
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An analogous formula was first derived for the case of N scattering by Cohen-Tannoudji
et al. [2]. The general case of arbitrary spin is discussed by Henyey et al. [1]. We follow the
notation of these authors.

3. Absorption corrections for spin 0 particles

We will discuss first the absorption corrections for the scattering of spin zero particles.
The calculation will be given in some detail, because the formulae obtained in this Section
can be easily extended to the general case considered in the following Section. Let us note
first that only one of the iwo terms in (1) has to be evaluated explicitly. Indeed, as seen from
Fig. 1

where d£2 is the surface element on the unit sphere. Consequently, the first integral can be
reduced to the second by a change of variables. The results for the first integral can be ob-
tained from the results for the second one by replacing the initial lengths of the three-
-momenta by the final ones.

For spin zero particles all the subscripts denoting helicities may be omitted. Moreover
the cosine drops out, because its argument equals zero. For the elastic amplitude we make
the usual assumption

Me(s) = Ce2, (3.2)

Here ¢ is the four momentum transfer squared and a is the slope of the diffraction peak.
Thus

t = 2Kz —1). (3.3)

Both € and a are assumed independent of ¢, but they may, in general, depend on s. In the
normalization of Ref. [1], assuming that for forward scattering the amplitude is purely ima-
ginary and using the optical theorem, we may rewrite (3.2) in the form

M) = —2)/s kiope®?* (3.2a)

where gy is the total cross-section.
For the inelastic amplitude we put

Min(g) = Debl2*, (3.4)

Here ¢’ denotes the difference between the square of the four-momentum transfer and its
maximal value. We have

v = 2Kk (z—1) (3.5)

where k and %’ are the initial and final three-momenta.
The form (3.4) of the inelastic amplitude is typical for Regge-pole models, and also it
is very convenient for our analysis. As explained at the end of this Section, the generaliza-
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tion of our argument to the case when expression (3.4) is multiplied by a slowly varying func-
tion of ¢/, e. g. by a polynomial, is very easy.

Substituting the formulae (3.2a) and (3.4) into formula (2.1), and using definitions (3.3)
and (3.5) we obtain

. AD .
SMinel = — T [kBorl+k'%07]') (3.6)
where o7 is the total cross-section for the final particles,
1 2
I(s,2) = [ dx [ depePx= D+~ 3.7
-1 0
and
I'=I1a—-a) (3.7
8 = bkk' (3.8)
a = ak?, a' = ak'? (3.9)

To calculate the integral (3.7) we observe that, as seen from Fig. 1 (with substitution ¢, - ¢)
y = xz+V1—22 V1 —x2 cos ¢ (3.10)

Expanding exp (« l/l —2z2 Vl —x? cos @) into a power series in cos @ and integrating term
by term we obtain
1

o« m 1 m
I(s, z) = 2n f ex—a—p Zj% (_~2l—_x_) A—x)"dx (3.11)
-1 m=
where
c=uaz+p (3.12)
e = "22: Ha? (3.13)

Each term in the series can be easily integrated using the identity
m
[ P (x)e%dx = c1e* 3 (—c)*PP(x) (3.14)
i=o

valid for an arbitrary polynomial P, (x). The subscript indicates the degree of the polynomial.
P®(x) denotes the k-th derivative of P, (x). In our case c is a large parameter. Consequently
the formula (3.14) evaluated at x = —1 yields a negligible contribution. Keeping only the
contribution at x = +1 and ordering the terms according to powers of ¢! we obtain after
simple rearrangements

oo

I(s, 2) = I(s, 2) Z ( ;_:) "L —e) (3.15)

n=0
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where
IL = QmcletF—Dte (3.16)

and L7(x) are Laguerre polynomials defined by

Liw = Y (-1 (”*“) iy (3.17)
m=0 n—

m| m!

Note in particular that LY(x) =1 and therefore I, is the first approximation to the absorp-
tion integral.

Since, as seen from (3.13), the parameter ¢ vanishes for forward scattering, the first
term in the expansion (i. e. 1) gives in this case the exact result. For scatterig angles different
from zero higher terms contribute. The second and third corrections read

e
L=t (6440 2) ()
s=T (6+4e+ ) (5 ) - (3.19)
[}
15+
—/ IVI
10
- - (Ir"‘Iz)/z
— — Lo/
05+
1 1 1 1 1 ’I 1 1 1 1 |
05 -+ (Gevrc)? 19

Fig. 2. Absorption corrections for spinless particles

In figure 2 the ratios I and !1-'[_—12
1

It is seen that already I, can be practically neglected. At higher energies the convergence
is still better.

for NN scattering at 5 GeV/c are plotted versus t.
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In order to compare our result with the eikonal approximation we observe that I, can
be rewritten in the form

_2n ab 1 b )®
Il == —C‘— exp {acc -2— + P ax’l B (3.20)
where

=g (3.21)

The eikonal approximation is obtained for high energies and small scattering angles. Then

a . . .
bt' is fixed, y = 7 and ¢ tends to infinity. Thus the second term in the exponent can be

(a+b)s
4

neglected. Furthermore z is nearly one and %% ~ k'?2 &~ —, so that ¢ ~ . In this
g y

s
4
approximation we obtain

L -1,

8n ab
= Sath) exp {2 @t t} (3.22)

where I, is the usual eikonal approximation. In figure 2 the ratio Iy[I is plotted versus t. It is
seen that in the |t range from |t ;.| up to 1 GeV/c? our first approximation is much better
than the eikonal formula (3.22).

In order to find the convergence radius of the expansion (3.15) we use Cauchy’s
theorem and the inequalities

(‘Z‘) <LY—) < (2:) ¢, (3.23)

The first inequality is obtained by keeping only the first term in the formula (3.17). Since &
is positive, this underestimates the polynomial. The second ineguality is obtained by re-
placing each Newton symbol in (3.17) by the largest one and by extending the summation

to infinity.
From (3.23) it is seen that the expansion (3.15) converges if
2¢ a? t

Thus it is indeed a high energy small angle expansion.

Itis easy to generalize our result to the case when the amplitude (3.2) and/or (3.4) is
multiplied by a slowly varying function of the momentum transfer e. g. by a polynomial. The
additional coefficients should be expanded in a power series around the point x == +1
andfor y = 1, and the resulting integrals can be obtained frcm the integral evaluated in this
paper by differentiations with respect to & and/or f. This method gives reasonable results
only if the series in question is convergent in the physical region —1 < x < 1. Therefore
it is particularly suitable for polynomials in ¢. Another interesting case is the factor

(3.25)

m2—t¢
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that is, the propagator of the exchanged particle. Here it is convenient to write

1 1 1
mi—t  2kk 1 m2?
T ome
and to use the identity
dod eﬁ(x—l)+a(zx-1)+¢}/1—_z‘ Vi—x cos g 46 ~ —ps
@ P = —e dple (3.26)
8
m2
'h 8= .
where T

Unfortunately, such integrals cannot be, in general, reduced to elementary functions.
Nevertheless, they can be handled more easily than the double integral on the L. H. S.
of Eq. (3.26).

In the forward direction the integral [ dple?® can be evaluated exactly. The result is
8

27 ¢~ Ei( —c0) (3.27)

where E(x) is exponential integral defined as

g@:f%@. (3.28)

The case of the Regge propagator cosec za(t) can be reduced to the one disussed above,
by using the Mittag-Leffler expansion of coses mwa(t) into rational functions.

For coefficients singular at x = +1 another approach is necessary. Fortunately, the
square root branch point, which seems to be only plausible singularity for forward scatter-
ing, can be easily handled, as shown in the next section.

4. Absorption corrections for particles with arbitrary spin

When the particles involved in the scattering process have non zero spin, the absorp-
tions corrections become more complicated. Firstly, the formula (3.4) for the inelastic
amplitude becomes untenable, because it has no kinematical singularities. For the high-
-energy small angle scattering at least the singularities at z = 1 (which follow from the
angular momentum conservation) should be taken into account. We put

. . b 2,3 v
Minel (S, t) — DV—t' Me2 — D (T) I/ 1 —zl”lebt' (4.1)

where ¢’ is given by the formula (3.5) and v = A’ —A.
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The elastic amplitude is usually assumed to be purely non spin flip in the helicity re-
presentation, therefore we keep formula (3.2).

Using (4.1) and (3.2), the formula (2.1) for the absorption corrections to the amplitude
(4.1) reads

where
A = [ dxdpeP* D=1 _2)' cos (v, -+ h(gy + g+ gy)}
A" = A(a - ). (4.3)

Some complications arise because of the cosine factor

cos {@yy +h(@y+@a -+ P3)}- (4.4

For a planar triangle the sum of the three angles equals zero, but for the spherical angle

we have

Pty T+2)(1+a -
tg qﬂ:ﬁ;j_(p_ = sin @, < Eltzz((l_l_—'x; - cos (pl) . (4.5)

Thus, our problem consists in evaluating the integral (4.3) where the sum of the angles
@, -+ @5+ @y should be taken from (4.5). According to the discussion given in the prece-
ding Section, the main contribution to the integral comes from the region where x is nearly
equal to one. Since moreover we are interested in values of z a2 1, the square root in the
formula (4.5) is a large parameter. Consequently we expand the cosine from formula (4.4)
into inverse powers of the square root. The first three terms of this expansion are

1—2) 1—m

COos Y@ —2]1 (mm

sin »@ sin ¢+
e —2z) (1 —x)
(1+2) (1+2)

Here ¢ stands for ¢,.

Formula (4.6), substituted into (4.3) provides integrals which can be reduced to those
discussed in the preceding Section. The integrals arising from the second and third terms

(h sin v sin 2 —2h2 cos v sin? @). (4.6)

of (4.6) will be called ‘‘spherical corrections”, since they vanish in the approximation in
which the triangle of Fig. 1 can be considered planar.

The further discussion depends on the value of ». For » = 0 the kinematical factor in the
formula (4.2) drops out. The first term in the expansion (4.6) equals one and in this approxi-
mation the absorption correction coincides with that for spin zero particles. The second term
in expansion (4.6) vanishes and the third contributes

1—x

1-=z
A® = —2p2 = Bla=—1)+aly—1) gin2
1 2h s fdxd(pe sin® @ ~

4.7)

+x
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Here and in the following the upper index of A denotes the order of the term in the expansion
(4.6). Integral (4.7) would diverge if the integration over x were extended over the whole
range [ —1, 1]. Since, however, it is an approximate expression valid for x close to 1, and since

this region gives the main contribution to the integral (4.3), it is legitimate to expand

into a power series in 1—x and to integrate this series term by term. Keeping only the first
term in the expansion and substituting y from (3.10) we have

1—z

A® = —p2 T5s fdxdtp(l —2)(1 —cos? @)ef—D+abe—+aVI-VI=scos o | O(c-4) (4.8)

where use has been made of the fact that at ¢ fixed, 1 —z is of order ¢~1. The estimate of the
error will be explained later. This integral could be evaluated directly, but it is simpler to
differentiate the basic integral (3.7) with respect to parameters. The result is

A® = p2 = 1 = {% + i e (azgfa))u} (4.9)

p=all—z%.

Here the subscript @z means that the differentiation should be performed keeping az cons-
tant. In order to obtain the first term of the expansion of A into inverse powers of ¢, it
is enough to substitute for I the approximation (3.16). The result is

T
(1+42)2a2 "
The subscript 3 reminds that this contrjbution is of the order ¢=3. The error in (4.8) and (4.9)
is estimated as follows. Each correction term to the integral written explicitly contains
higher powers of 1 —x. Consequently, in order to calculate it, it is necessary to perform
more differentiations with respect to fi. Since each differentiation brings in the factor ¢1
and the main term is of order ¢~3%, the corrections are at most of the order ¢4
A similar calculation for |p| =1 gives

AP = ]/ £ 4.11)

AP = —h2 (4.10)

O _ 282+T7e+2

A o A (4.12)
26412263 4-57e2+30e +6
A® = e A©® (4.13)
AW = — 40 (4.14)
o2 a(l+z)
hy 5

n — ( Y21 2] 4.15
A9 = i) (8 P ) (-15)
AD = —(h2—hy) - AP, (4.16)

2(14, )2
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For |v| =2
AP = =1, (4.17)
e2+5e43 ¢
.A(zo) = - '—2;'—“—?1-1 (4.18)
40 = 21 % (L s 7ee 050490 (4.19)
3 c Y42 \2 )
hy €
- - =
Af g ek (4.20)
hy  (e+4)e ¢
(1) — =
A3 2q(1+2) c ¢ L (a-21)
1 2 1 &
A — 2] — —|te '
¢ (a(l+z)) {h (1 —¢)+hy (s—i— 2)} p I. (4.22)
[ [
A,/A
ﬂ
1 7
———
N A+ A =
R (2 N (ar+42)/a
- / -
Y/
osf osk
o V=l [~ V=2
1 1 1 1 1 1 1 ] ] | I ] i 1 ] [ i 1 1 1 I -
, 10 5 R
-t (GeV/c) -t (GeVi/c)

Fig. 3. Absorption corrections for ¥ =1 and v = 2.

The main conclusion one can draw from the formulae (4.11)—(4.22) is that, already at com-
paratively low energies the spherical corrections are very small. E. g. for the NN scattering
at 5 GeV/c and the |t| region 0—1 GeV/c® the spherical corrections for » =1 and 2 do
not exceed 3% and 6%, respectively of the total absorption term. The corrections AP,
AP and the eikonal approximation for » = 1 and 2 are presented in Fig. 3. The kinema-
tical conditions are the same as in Fig. 2.
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The formulae for higher helicity flips are not given, because they seem of little practical
importance. In each case the high energy, small angle approximation for A® yields the

result of the eikonal approximation, and the expansion for 4” converges if the condition
(3.24) is satisfied.

5. Dynamical zeros in the forward scattering amplitude

Up to now we have considered only the simplified cases when the amplitudes are simple
exponentials in momentum transfer multiplied by factors required from angular momentum
conservation. However, as already mentioned at the end of Section 3, the method is quite
easy to generalize for more general forms of amplitudes. In particular, it applies easily if the
amplitudes are multiplied by polynomials in momentum transfer.

A particularly interesting case, which we would like to discuss now, is the problem of
dynamical zeros in the forward amplitude. As is well known, the absorption has a dramatic
effect: in general, the forward dynamical zeros are completely removed.

We will consider the amplitude with the dynamical zero of order n in the form

be’
el D(—‘t"Jr‘tmax)"("t‘i'tmax)*["]e 2 (5.1)

It is just the amplitude (4.1) muitiplied by an additional factor

(—t4t.0)" (5.2)

which is not required by the angular momentum conservation, but may be imposed by a spe-
cific dynamics of the interaction. Well-known examples of such a behaviour of the amplitudes
are one pion exchange models of np charge-exchange scattering and charged s photoproduc-
tion.

According to the general formula (2.1) and using the abbreviations introduced in
Section 3, the formula for the absorption correction to the amplitude (5.1) becomes

n+3v|
oM = — TAG% (%;)i) {k2o1A(n)+k20TA4’(n) (5.3)

where
A(n) = f dxde, (1 —x)*THFlefrm D3 e Diapl=2t V= cos o (v, + 1@y + @y +95)) (5-4‘)

and, according to the general rule, A’(n) can be obtained from A(n) by the replacement
o -

The integrals (5.4) ban be easily evaluated, once the basic integrals 4 = A(0), which
were discussed in the previous Section, are known. We have

" A4(0)

A(n’) = (_l)n aﬂ,,

(5.5)
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It is clear that, since the integral A(0) does not have any dynamical zeros in the for-
ward direction, also A(n) will not have such zeros. Consequently the total amplitude after
absorption does not have a dynamical zero.

In the practically most important case » = 0, n = 1 (a dynamical zero of the first order
in the no-flip amplitude) the formula (5.5) gives in the first approximation

st = A0 B (1 4 4) (koyeste-D4e prglex s 1), (5.6)
dn be
According to the discussion given in Section 3, this formula is exact in the forward direction.
Thus we have
AD ortor

4 k K
(a %;- +b) (a -k—' +b)
It is instructive to compare the value (5.7) with the maximum value of the unabsorbed
amplitude (5.1), which reads

oM(z =1) = 6.7)

Mmax = — %e‘l. (5.8)
For high energies we obtain
Mz=1) = de b or
Mpx @@ b+ta atd’ (5.9)

For reasonable values of the parameters a, b, and o the formula (5.9) gives values of the
order 1 or larger, thus showing that the absorption correction fills in completely the dip of
the unabsorbed amplitude.
Finally, starting from the unabsorbed inelastic amplitude of the form
Dy

Mipa =
1ne! m2 _tl

gbr'2 (5.10)

we would like to give the formula for the absorption correction in the forward direction
It reads

Mz=1) = — —al—“llkzo’r [66“’E,~(—06) + %-] +lx o a’) (5.11)
where
m2
0= S

6. Conclusions

We presented a method for evaluating the first absorption term to the scattering ampli-
tude by expanding it into a power series. This method is applicable to models, like the Regge
pole model, where the uncorrected amplitude is, in the momentum transfer, an exponential
multiplied by a slowly varying function. The energy dependence is irrelevant.
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The first term of our expansion gives for forward scattering the exact value of the ab-
sorption correction.

Corrections to the first approximation can be divided into two groups:

a) Ordinary corrections are higher order terms obtained when evaluating integral (4.3)
with the cosine replaced by cos vg.

b) Spherical corrections result from a more careful evaluation of the cosine. The term
“‘spherical” is proposed, because these corrections vanish in the approximation, where
the spherical triangle shown in Fig. 1 is considered planar.

Ordinary corrections build up an alternating series, which converges when

2
2 {M_a__} ld _
¢ (a+d)2) s
The convergence radius does not depend on the amount of helicity flip, but the convergence
rate improves with the decreasing belicity flip. Even for double spin flip, however, the con-
vergence is rather rapid. We have calculated numerically the corrections for NN scattering
at 5 GeV/c primary momentum in the momentum transfer region 0-1 GeV/c2. The first three
terms give a result valid within 1-29%,.

Spherical corrections are small compared to ordinary ones. This is an important obser-
vation, because only the spherical corrections depend on individual helicities and not just
on the amount of helicity flip.

As an example of application of our technique, we have discussed the problem of
forward dynamical zeros in the inelastic amplitude.

The authors thank Mr. K. Fialkowski for a discussion about the absorbtion model.
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