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ON THE SPINOR REPRESENTATIONS OF THE COMPLEX
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We investigate the spinor representations of the complex Poincaré group in the case when
the complex mass of ‘‘the particle” is different from zero.

The spinor representations of the complex Poincaré group are non-equivalent to the unitary
representations, but they are equivalent to the unitary representations, when we restrict to the
real Poincaré group.

1. Introduction

In this article we discuss the spinor representations of the complex inhomogeneous
Lorentz group. The complex continuation of the covariant functions in the quantum field
theory, and covariance under the complex homogeneous Lorentz group are guaranteed by
the Bargmann-Hall-Wightman theorem. If we assume that the scattering amplitudes are
covariant under the complex Poincaré group, we obtain automatically the results of quantum
field theory such as the CPT theorem, crossing relations and the spin-statistics relation.

This point of view was proposed by Roffman [1]. We believe that the unitary represen-
tations of the complex Poincaré group and the non-unitary representations which reduce under
the real Poincaré group to unitary representations have physical sense. The spinor represen-
tations which we discuss in this paper reduce to representations equivalent to unitary repre-
sentations when we restrict to the real Poincaré group. We investigate the spinor representa-
tions in the case when the complex mass ‘‘particle” is different from zero.

The spinors which we introduce obey the Dirac type relation. In the simplest non-
-trivial case, we obtain the relation formally identical with the Dirac equation in the momen-
tum representations, for complex mass and momentum of the “‘particle™.

2. Complex inhomogeneous Lorentz group

The complex inhomogeneous Lorentz transformations are of the form

o= w4 AN, u,v=0,1,2, .. 1)
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This group, which we will denote P(C), is also named complex Poincaré group.
The proper Poincaré group P,(C) is the connected component of the unity P(C).
The P.(C) is the semi-direct product of two topological groups Ty(C) and L,(C) (complex
proper Lorentz group).
T4(C) is the Abelian group of four dimensional translations. We construct the universal

covering group P(C) of P(C).
With each four vector z”, we associate a 2X2 matrix

04,3 Hl_j,2
209423 Zl—iz
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Let SL(2, C) be the group of 2XxX2 complex matrices of determinant 1.
With each vector z and pair of the matrices (a, b), ¢ €SL(2, C), b €ESL(2, C) we
associate the vector z’ defined by

z' == azb* = A(a, b) 2. 3)
where —

Ala, b) € L(C}.
P.(C) 1s thus the set of elements (a, b, w) with the group law
(@5 by w3) (a1, bys wy) = (Ga0y, byby, wy+aywyby). (4)

where w = w € Ty(C).

3. Irreducible representations of the complex Poincaré group

We denote by U(4, w) or U(a, b, w) the representations of the complex inhomogeneous
Lorentz group.
Equation (4) implies the following multiplication law

Ulay, by, wo) Ulay, by; wy) = Ulayay, boby, wy+asw,bd).

In analogy with the Poincaré group we may find irreducible representations of the group

P4(C) (12], [3), [4D:

é-(w-r+5‘s)

U4, w)f(B,) = e D(B;IB -1 i) f (Bt 40, 5)

where (4, w) € P.(C).
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B

., is the complex Lorentz transformation obeying:

o o
B r=r, B, s=s. {6)
where 7, s are the standard complex vectors, Ry =B !4B 451,471 is the so-called Wigner

rotation which belongs to the stationary group of 7§

Reer =7, Ress=35 )

¥yS L)

D(R;3) is an irreducible representation of the stationary group 7, 5.

T,(C) has irreducible representations labelled by two complex four vectors r, s.
When r = s, the representation of the Ty(C) is an irreducible unitary representation
in one-dimensional Hilbert space. In this paper we consider the case r = 5 and

2=()2-(72=a @®)
is different from zero. It is therefore convenient to fix the standard positions of 7, s.
r=2(1,0,0,0), $==z(Q,0,0,0n 9)

The stationary group of the 7 § is isomorphic with the complex orthogonal group
SO(3, €) in the three dimensions.
It is given by pairs of matrices

(a, (@), a €SLE C). (10)

The SO(3, C) group is locally isomorphic with the SL(2, C) group.
The representations of the P (C) are then given by operator U(4, w)

U4, wf(B,) = &'*® "D(B;*AB4,)f(B ,) 1
where B, = B, ;.

14

4. Finite dimensional representations of the complex Lorentz group L.(C)

The finite dimensional (non-unitary) representations of the L, (C) can be obtained as
a tensor product of the spinor representations of two SL(2, C) representations

D’ K(a, b= Dy @) ® DK(b), (12)
where J = (jy, ja)s K = (ky, kp).
jl’jz’ kls kz =0, ‘L‘, 1...

The representations I¥(a) and DX(b) are the ordinary spinor representations of SL(2, C)
(I5), [6D).

The representations 1’(a) and D¥(b) can be written as:
D’(a) = DY»79(q) = DUq) @ DO (a).
DK(b) - D(’"’*')(b) = D(kuﬂ)(b) ® D‘o’k')(b). (13)
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In particular, we are interested in the representations D’X(a, b) which are irreducible under
S0(3, C).
If we adopt
b= (at) ™ (14)
Then corresponding to (12), (13, (14), we must have

D'K(a, (a*)-1) = DIg) @ D®i(a) ® DO*)(a) @ D*V(q)

]1+kl Jatk,

= 2 © X ©D%), (15)

={i—k s=lii—&]

where we have used

D(j’o)(a) — D(u’j)((a“*)"l). (16)
Equation (16) implies that the following representations of L,(C)
DONORY g b), DUOR G b) 17

are irreducible under SO(3, C).

In analogy in with (15) we may reduce the representation of the L,(C) under the
SL(2, C) subgroup.
N . Stk Jatks
D'X(a, a) = DY) @ D¥V(a) @ D*V(a@) ® Do) = > ® ¥ ® D¥(a). (18)

r=|fi—k| s=|ji kil

5. Spinor representations of the complex inhomogencous Poincaré group

We define two spinor functions:

¢(r) = DSOENB) f(B,),

and
@(r) = DB f(B,) (19)

where DUO®EN(RY DODOK(PB ) are irreducible finite dimensional representations of the
L4(C) group.

The spinor functions ¢(r), ¢(r) transform under the transformations of P,(C) correspond-
ingly
U, ) plr) = &P DIOED (L) (A=),
U4, w) ¢(r) = ' R@DOPOR(L) p(A-1r). (20)
The spinor functions ¢(r), ¢(r) are not independent, since they obey the relation
() = DUOEN(B) DOPORBIY ¢(r). (21)
We may use (3), (4) to calculate
D(f,ﬁ)(k,ﬁ)(Br) D(O,i)(o»k)( B: 1). (22)
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We write
B, == (a,, b,). (23)

and after some algebraic manipulations we obtain
D(j’o)(k"))(B,) . D(O,i)(O,k)( Br—l) — D("’o)(a,'aj') ® D(k’o)(br’bf). (24)
With the help of the expression (24) we write (21) as
(1) = D9a,0,") ® D*(b,b})g(). (25)

This is the first type of the generalized Dirac equation for the P,(C) group.
We obtain the second type of the generalized Dirac equation if we take

¢(r) = DSVSOB) £(B,) (26)
and
() = DOPOX(B) f(B,).
The generalized Dirac equation for the @, @ spinor functions may thus be written
#() = DIV (B DOV B 5 @)
which after some manipulations, may be written as
¢(r) = D9%rfa) @ DEO(rta)g(r). (28)

In the simplest nontrivial case j = 1/2, k = 0 we obtain the relation

o) = ra ¢()- (29)

If we introduce the four spinor

y = (¢(), #(r))

we may rewrite (29) in the more symmetric form
(7, ey = 0

where y, are the usual Dirac matrices.
This is the Dirac equation for complex momentum r* and complex mass a.
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