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GENERAL RELATIVISTIC FLUID SPHERES, III. A SIMULTANEOUS
SOLVING OF TWO EQUATIONS

By B. Kucaowicz

Department of Radiochemistry and Radiation Chemistry, University of Warsaw*
(Received June 4, 1970)

Several new solutions of the gravitational field equations for space filled with matter are
given. They are obtained under the following assumptions: () spherically symmetric distri-
bution of a perfect fluid, (b) static gravitational field, (c) canonical Schwarzschild coordinates.
These assumptions are the same as in the two preceding parts of the work; the procedure of
deriving the solutions is modified to the extent that instead of dealing with one differential equa-
tion for one unknown function we have to deal with two such equations. Only those solutions
are presented which have such a simple form that a study of general features of relativistic
stellar models may be easily performed with their help. Some of the solutions (being of an
especially simple form) are examined in more detail; asymptotic equations of state of the
ultrarelativistic matter in the central region of highest density are given.

1. Outline of approach

This paper is the third in a series dealing with deriving new exact solutions of the
system of gravitational field equations, under the simple assumption of a spherically symme-
tric, static distribution of a perfect fluid. The system of equations given by the formulae
(2.4) ... (2.7) of paper I' was reduced to a homogeneous linear equation of the second order
iny = ¢"®in paper I where several exact solutions have been derived. In Section 8 of paper 1
and in paper II another possibility of reducing the abovementioned system of equations was

considered: that of dealing with a first order inhomogeneous linear equation for the func-

tion z = e~

In paper I we have tried out various possible expressions for e=* which could guarantee
us a simple integration of the differential equation for e”/2. In paper II we have considered
some simple expressions for e” for which it has been possible to present the solution of the
differential equation for e~* in terms of elementary functions. Now, it is possible to apply an

* Address: Uniwersytet Warszawski, Zesp6l Radiochemii i Chemii Radiacyjnej IPPCh, Warszawa,
Zwirki i Wigury 101, Polska,

1 The first two parts of this paper (Kuchowicz 1968a and 1968b) are denoted, respectively, by the symbols I
and IL
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apparently more difficult approach, namely that of dealing with two differential equations
for two functions at once.
If the differential equation (8.1) from paper I is given in the following notation:

Z+f(0)z = () 1)

then its solution is

et = CeF o~ F f g(reFdr’ (1.2)

with

Fir) = ] Ardr'.

We must take into account the fact that the function f{r) is given by the first of the Equations
(1.2) of paper IL. With the substitution y = €2 this becomes the following second order
differential equation for y:

rey'’ — (1—!— %—fr) ry' — (1+ %fr)y':—(). (1.3)

The symbol f{r) denotes the same function in the three equations given above. Instead of

dealing with one differential equation only, as in the preceding parts of this paper, we have

solved simultaneously the two Equations (1.1) and (1.3) with the same function f{r}. We must

add, besides, that the function g(r) which appears in Eq. (1.1) is not completely arbitrary but

depends in the following way on r (through the intermediary of y(r) and its derivative y’(r)),

2y(r)

glr) = Wm (L4)

It may seem that the arbitrary function f{(r) is superfluous. It is not quite so since we

may choose such a form of it that the two eqnations (1.1) and (1.3) may be at the same time

integrated in terms of elementary functions. In the following, we look for solutions of this
system of equations with various simple choices of f(r) of power form etc.

2. Solution for f = 2D|r
Eq. (1.3) has now the form:
iy " —(1+Dyry'— (A +Dyy = 0 2.1

which is exactly the same when rewritten in terms of the independent dimensionless va-
riable x = r/r,. Here r, denotes the radius of the fluid sphere we deal with, and the variable »
is confined to the interval (0, 1). Explicit form of the solution depends on the sign of the
discriminant

A = D*+8D+8. 2.2)
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We distinguish thus the three following cases:
1. positive 4 which occurs for D < —2 V§—4 ~ —6.82,and for D > 2 V§—4 ~ —1.18:

y = C;r*+ Czrﬂ (2.3)
with

, f =%(2+D:tl/2).

II. A=0,i.e. D= :t21/§-——4-:
1+ 2
y=r 2(C;+Cylnr). (2.4)

II1. negative 4, which occurs for —2 V§—~4 <D <2)2—-4:

y = FE [C cos < V_— In r) +Cy sin ( GZ In r)] . (2.5)

C, and C, denote here arbitrary integration constants while ) may be regarded as a par-

ameter that will be adjusted later to give integrable expressions for e-*. In the following
we shall deal with such expressions corresponding to positive 4, as these are to be handled
with in the most easy way.

r

2.1. Some explicit solutions for e* in case of 4 >0

When we insert the expressions for £{r) and for g(r) (in terms of our solution (2.3) and
its derivative) into Eq. (1.2), we arrive at the following general formula:

2D
-1
e~ A CI'_ZD Cl - - V2A ( i CI ) _2D [2‘::_@’-‘ dv (2.6)

where under the sign of the integral the auxiliary variable v = r/4 has been introduced.
C is here an arbitrary integration constant while the constants B} and B, are expressed in
dependence on the constants C,, C,, and the parameter D:

D /A
B, =0 (2—%——2“4“—1‘5—‘)
D V
B, = C, (2+—§~~-2A>. 2.7

The integration in Eq. (2.6) will be carried out explicitly in some simple cases.
2.1.1. 2DJ)/A = 1/2. This case corresponds to the following value of the parameter D:

D = Tlg (4+2)/34) ~ 1.044. (2.8)
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We have
y = Cy*+Cyr 29

with
o = % 6+ V3—4) ~ 363, f= % 3 —V?E) ~ —0.566

and the following values of the integration constants (which are obtained from the standard
set of boundary conditions given in the Appendix to paper I):
_a(1+28) 28 . — 20 —a(l+2a)

= anyien” T Tapyicad 210

The parameter a = rJr, denotes the ratio of the Schwarzschild radius of the fluid sphere to
its geometrical radius ry; it cannot exceed unity. We call this parameter the mass concentra-

tion. We see at once that the integration constant C; is always positive, while the other
constant, C,, is positive only for

2
a<+y (/34 —1) ~ 0.878. (2.11)
Depending on the sign of C, we arrive at different exact formulae giving e~

2.1.1.1. Positive C,. For values of mass concentration fulfilling the inequality (2.11)

the following expression for e* is valid:
—2 = — —————— —2D —
e D14 +r {C
4 C, (1+a) G, w]
: —— arct A T . 1
mrr Vo e ) e 212

From the boundary conditions for a standard fluid sphere we have the following value of
the integration constant C:

e . 4 2a—a (1+2a)
C_{l a-+ ) + A +a)h (1+ﬁ)‘/-]/a(1+2ﬁ)—2/9 .

(1+a) [a(1428) —28] } 2D

. 1
xarctg [[/ 1+p) Ra—a (1+2a)] JJ @13)
The fact that this constant is always positive is of a high importance for the proper behaviour
of the metric function e~* which near the centre goes to infinity like Cr—2P In order to save
space we do not give here the explicit formulae for the dependence of g and of p on the radial

variable r; these expressions can be easily obtained by inserting our solutions (2.9) and (2.12)
into the formulae (1.3) from paper IL
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2.1.1.2. €, = 0. This case corresponds to the unique value of mass concentration

o= 3(1/%111 ~ 0.878. 2.14)

Since the solution is of an exceptionally simple form:

1 :
~A e (p—2D _
e * = Cr Di+a) (2.15)
with
1 2D
C= [1 —a+ DiTa) ] ry (2.16)

the explicit formulae for matter density and pressure are simple, too:

@D-)C  1+D(l+a) 13—)34 [ n\stervm /341 21
80 = pm Dl+ar 207 \r g @1

gy — CO+20)  142a+D1+a) _ 5+V34 [(n\gess
7P = r2D+2 D(1+“),2 - 4,2 r .

Both the density and pressure are decreasing now monotonously in value with increas.
ing r, and are always positive definite. When we consider a very small neighbourhood of the
centre of the sphere, in each of the equations (2.17) the first term is the leading term, and
the following equation of state is obtained asymptotically in the central region:

p =3 (11+2)30e ~ 755 ¢. (2.18)

This relation is at variance with the standard assumption concerning sound velocity in the
fluid interior2.

Provided we would like to accept the usual condition: p < g, the validity of the solu-
tion presented in this subsection would be restricted to the following spherical layer:

0.78r, <r<r (2.19

and at the internal boundary r; = 0,78 r; it should be matched to another internal solution
corresponding e. g. to the equation of state p = g. The difficulties with obtaining exact
solutions which are physically meaningful at every point are known, and one should not
wonder at having a solution that is applicable only in some part of the fluid sphere®.

2.1.1.3. Negative C,. For mass concentrations a exceeding the value given by Eq.
(2.14) we have

~ 1 - 4 ] / C .
et — _ vy +r w{c - T aR — ?jln @(1)} (2.20)

2 There should be v45,,4< ¢
3 This remark applies also to a major part of other exact solutions derived in this paper.




442

where

(1 +8)Cy —(140)CyP+2) —C.C, 1+ ) (11 ) r2P
(1+8)C,+(1+a)C, D

() =

and

! 4 a(l+2%) 2«
C= [1 —a-+ D(1+2) + 1+ (1+ﬂ)l/'Va(l+2ﬁ) 28 In @(rb)]

2.1.2. 2D\/A = 1/3. This case corresponds 1o the following value of the parameter D:
} 1 1

D= A”?il)/« ~ 0.606. (2.21)

The function e"/? = y is given by Eq. (2.9) with the following values of & and f§:

o« = -1 (74 /T4) ~ 3120, B = 7 (5-—)/74) ~ -0.515.

The function e ix given below:

»—A = P 1 1 r—_D [(' - )C‘I ]
c D(1+a) l ’ C‘/s (1+a)'s (1 +p)h
: 2D — /3 ,2D
“« ;i In 1:41(1+ac) +VGO+p) V5 aretg V31 ; ) 222
2 Y C L) PP+ C(1-f) o ol A+ F)
D2 A Sl
6'1(1-;“a)
with
C=il—a+ 1 2

Pi+e) T Tray (1 rpn

f/ 22 —a(l+2a) liln YA+ aa(l +25) ~20) + V(IL+p)2a—a(l +22)]

a(l-+2p) ~éﬁ i/(oc /3)‘(:2 —a)

1/3_ aretg

20
(1 kﬁ} 20 —a (1-+2a)]
1 a)fa(l+26) ~2] J
The two other integration constants are given by Eq. (2.10). Formulie for matter
density and pressure are given below only for a very specific value of mass concentration:

9
when the metric functions have a very simplified form from the beginning since Cy = 0.

This sub-case is very similar to that studied under point 2.1.1.2. The whole term in square
brackets in Eq. (2.22) vanishes, and the matter density and pressure are given by formulae
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resembling Eq. (2.17):
44274
870 — 29 — 31/74 ( : )__35 = Y743

282 » 4r2
T+ V74 4+ 2V74
8np = 4}? [( . ) —1] (2.24)

Asvmptotically in the neighbourhood of the centre we obtain also a troublesome equation
of state like Eq. (2.18); the numerical factor on the right-band side is now ca. 31.4. Under
the assumption p < p our solution is again valid in a spherical laver matching the surface.

2.1.3. 2D/]/Z = —n. If n denotes a natural number, the integral in Eq. (2.6) may be
expressed in terms of a finite number of elementary functions for the two following series of
values of the parameter D:

_ —4n22n)/2(n%14)
= n®—4 ’

It must be. mentioned here why we do not consider smaller valies of n. For n =0

D

=3,4, ... (2.25)

we have immediately D = 0, and it can be shown that our solution is just given by the
formulae (5.9) and (5.10) of Wyman’s generalization of Tolman’s solution VI (Wyman 1949),
In case of n = 2 our solution is reduced to the special solution given under point 6.2 in
paper 1I. For n = 1 we may use the formulae to be given helow only with the plus sign in
Eq. (2.25); there does not exist the second parameter D_ in this case (as its sign would be

incompatible with the sign convention in the coadition: ZD/VA = —1).
With n > 3, the values of D_A__ are restricted to the following intervals:
~1>D,>2)2-4, 2)2-4>D_> —14 (2.26)
i. e. they are always negative. The metric function ¢=* is given by the general formula:
et = Cr 2 — 2n +

Dldn+(n —2)D]
E r +

 dn+ n—Z)D lk : nfl & [4n = (n+2)D}*
2D
w6 B (n-2)D) Cildn-=(n=2)D] | Gyldn+(n+2)D]r" .
(=D [ ] [dn+(n+2)D]+ 1“( on ' 2n )} 2.27)

It goes to a finite value in the centre:
2n[ —4n-+-(6 —n)D]
Djdn—(n—2)D]?
Now, if Eq. (2.27) should be valid evervwhere inside the sphere, this finite value should be

positive, and this gives the following condition:

4n

n >0 (2.28)
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which is fulfilled for » < 14. In dealing with the series D_ given by Eq. (2.25) we are thus
restricted to its members corresponding to n < 14; no restrictions of such type occur in
case of the second series D,. It should be added that though in general the values of the

parameter D from Eq. (2.25) are irrational numbers, just for n = 14 we obtain two rational
pumbers: D_ == —7/6, and D_ = —

2.2. A general solution corresponding to 4 =0, 1. e. D= 12V§—4-
By inserting Eq. (2.4) into (1.4) and (1.2) we obtain

1
Dl+a) T

o | P L P

where Ei(x) denotes the integral exponential function (defined in section 4 of paper II),
and @ = 1+Dj2 = + )21

The three integration, constants which appear in formulae (2.4) and (2.29) are expressed
in terms of the mass concentration a and geometrical radius ry:

Cl-=[ o 20 - a(1+20c) ]

Vla,

e *= (Cr-2 —

_a{l+2a) —2a
’ 2)1—a
C = [3 3;1/2- —a—ef@EL[ f(a)]] P (2.30)
where
4F2)/2+a(—-3+ )2
fla) =4 = =
2F2)/2+a(£2)2-1)
The upper signs correspond to Dy = 2V§ —4 a2 —1.18, the lower signs —to D_ == ~2V§—
—4 ~ —6.82. Matter density and pressure are given below:
+a)+1
Bme = DD((ll ‘o;)c)ﬂ_2 - - *
T (1+a)%r? L —{—lnr]
1
+(2D 1) Cr 2D~ 2+ (1+a)2 exp[ 1+“ X
C 1
—2D-21; 1 L.
Xr Ei [2D <C2 Tra - In r)]
D(l+a)+1+2a 2C, 1 _m) .
- —- ca 2D—32
87p D+ )7 GG \ Dy FO ) A2
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142 _ ¢, 1 ] —2D—2%; [ (Cl
-+ w exXp [ 2D ( C2 + 1 n a) 2 EI 2D Cz +
1 2C,
- 2
T T¥a “"’)]{” 123 (cl+czlnr>}' (231

The solution corresponding to D_seems to be of a rather low value due to its unphysical
behaviour (e. g. negative value of e~ in the centre where the pressure is going to minus
infinity). In case of the second solution (with D ~ —1.18) the following equation of state is
asymptotically valid in a sufficiently small vicinity of the eentre:

b= .;_ @)2—1) o= 0.271 0. (2.32)

This equation, though describing matter of the highest density, is compatible not only with
the standard assumption dealt with under point 2.1.1.2. but also with the much stronger

condition p < 1/3p which is considered frequently in case of relativistic superdense fluids
(Zeldovich and Novikov 1967).

3. Solution for f =24 — 2
r
With this substitution for f we obtain from (1.3):
r2y" —Ar¥y' —Ary = 0. 3.1
The one solution of this equation that will be used in this section is
y = Bre® (3.2)

where B is an integration constant. The other linearly independent solution is not elementary
enough to be used in Eq. (1.4) and (1.2). This is, however, no trouble since to maintain the
necessary number of adjustable constants in our general solution it is sufficient to treat the
parameter A as if it were the second integration constant. The third integration constant C

appears in the expression for e~ %:

1+4r  A%?
z " e
The density and pressure are:

8 _l__./i” A3r + 542
e= 2r2 r 2Ar+4 4

e * = Crle—4r 4

e=24r Ei (24r+4) — %Azrze—M'Ei @4r.  (3.3)

+C(2Ar—3) e~24r 4

2
+ ";g: e=24r(24r—3) Ei 24r+4) + Z—Aze—%(s —24r) Ei (241)

1 54, A
ot P

—542 (% + %) e=24r Ei (24r)+24Cre=24r, (3.4)

8mp = (3+Ar)e=24r Ei (2Ar-+4) —
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From the boundary conditions we find the integration constants:

4_8a2 o Yi-a exp[ 2—3a }

T 21—a)r’ s 2{1—a)
4 - 9a+4a? 3a—2 3a—2 15 .. [3a—2
C—{ 4(1—a) e"p( I—a )+ 8(1—a)? [EEI ( 1—a ) -

1 . [2—a —
__?El(l”_a)jl}rb 2 (3.5)

All our expressions are valid under the assumption
A #0, i e. a+#2/3.

When A = 0, we have the equation 3" = 0, hence y = C;r+C,, and this is just the solu-
tion studied under point 6.2 in paper I

It follows from Eq. (3.4) that as we approach the centre of the sphere, the equation of
state of matter goes in the asymptotic limit in the most rigid form: p == .

4. Concluding remarks

This paper presented a continuation of the author’s previous efforts devoted to a deriva-
tion of exact solutions of Einstein’s equations. The solutions are in many cases of such
a simple form that they provide a means of studying general features of relativistic stellar
models with sufficient ease. These solutions were obtained under the three simplifying
assumptions: (a) spherical symmetry, (b) static gravitational field, and (c¢) canonical Schwarz-
schild coordinate system. Since it seems that it is no more easy to obtain further solutions
under all these assumptions, we shall resign from either of them in our future investigations
of the problem.
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