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PHENOMENOLOGY OF DOUBLE REGGE POLES

By G. Biarxowskr*

Institute of Theoretical Physics, Torino Univeisity**
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The problem of the experimental consequences of the assumption of the existence of
double Regge trajectories is discussed from the point of view of the resonances region as well
as the high energy region.

Some arguments in favour of such a hypothesis are presented. The finite energy sum
rules and Veneziano representation for the double poles are written down and briefly discussed.

1. Introduction

In this paper we wish to re-examine the problem of a possible existence of double
Regge trajectories. It is well known that there is no physical principle which forbids the
double poles to appear. The only requirement is that the stable particles should correspond
to the single poles; we are however, free in ascribing the order of the pole to the resonance
state.

In such a situation the problem of double poles may be looked at from two points
of view. Firstly, we may ask whether a dynamical model can be invented in which double
poles would appear. Secondly, we may look for possible experimental consequences of the
hypothesis that a given unstable particle is situated on a double Regge trajectory. We
do not intend to deal with the first problem and here we wish to give only a brief comment.
As is well known Bell and Goebel [1] presented a potential model in which double poles
were generated. This was done by introducing to the Schrédinger equation for the S-wave
scattering a potential function of such a type that two regions of trapping of the scattered
particle existed. Then, by an adjustment of the parameters it was possible to show that double
poles may indeed appear. It is clear that such potential can be easily realized if the tail of
the interaction were described by a certainYukawa-like attractive force which, however,
for smaller r would be masked by the centrifugal force. Then, assuming that for very small r
another attractive interaction appears which behaves at the origin in a more singular way than
the centrifugal force, we obtain the second region of trapping. We see moreover that in
such a case the two regions of trapping join for / < 0, so that the double poles can be obtained
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only for [ > 1. Since all the known stable mesons have spins 0, such a model would be
sufficient to save us from double poles in that energy region where they cannot occur.

There are, however, also other possible mechanisms of generating double poles, like
that discussed by Guralnik and Hagen [2], who used the relativistic wave equation with
different coupling schemes, but with a source of the type 1/r. This problem has been discussed
also by Eden and Landshoff [3] in the framework of the perturbation theory.

A frequently used argument against the double polesis that if the analyticity in the coup-
ling constant existed we would be able by increasing the strength of the interaction to pull
double poles into the region below the threshold so that they would appear as stable particles.
It is not so, however, since we are allowed to introduce into the residue function a factor
depending in the trajectory a(s), which vanishes for all the values of [ lesser than 0. This
would again mean that no double poles appear with [ = 0 which (for bosons) is completely
satisfactory. In fact we used to introduce such cancelling factors for negative s values at
least to avoid the ghost states and also sometimes to improve the experimental fits. It would
not be more difficult to use them also for s > 0. A person who would say that even in such
a case double ‘‘stable” poles for [ > 1 are possible should first explain why there are no
stable mesons with spins larger than 0.

Summing up, we are of the opinion that the existence of double poles depends only
on dynamics and is not the question of the general principles. As such the question should
now be solved by the phenomenological analysis of the data. It is just what we would like
to discuss in this paper.

The problem of experimental consequences of double polesand in particular of the double
Regge poles has been already partially examined by Gatto [4] and by Kreps and Moffat [5].
For the sake of completeness we shall quote in this paper also certain formulas derived by
those authors, and particularly by Gatto.

In fact the most attractive argument for the existence of double poles is of course the A,
meson [6]. It is clear that the double pole hypothesis is not a unique way to explain the data.
This problem has been reviewed by Morrison [7], where another hypothesis has been put
forward, namely that in the region of the 4, peak two resonances exist, one of J& = 2+
and one J¥ = 1*. The main argument for such an assumption is a non-typical energy beha-
viour of the total cross-section for the process mw—+p — A3 +p which is of the type
(prap)”™°, whereas for similar processes the cross-section behaves like (prap)”*°. However,
as discussed by Morrison, there are also certain arguments for the existence of one 2+ meson
only, which in that case should be a double pole. The strongest support for that is the
splitting of the peak which can be explained best by assuming a double pole fit [6]. One
could also take into account that the branching ratio for the three observed decays of 4,,
that is into o7, 77w and KK do not change appreciably with the energy. As we show below,
the different peak structure for KK and gz decays [8] can be easily explained by the double
pole model.

Some arguments in favour of the hypothesis that the ¢ meson is a double pole have
been also presented. The first of them is the good agreement of the so called “‘dipole fit”
with the experimental data for the electromagnetic nucleon form-factors [5], [9]. Moreover,
as shown by Kreps and Moffat [5] the non-vanishing polarization in the z#—p charge ex-
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change scattering can be most easily explained assuming that the g trajectory is in fact
double. The non-existence of the double peak structure is obviously not an argument
against such an idea.

In such a situation one can even speculate [10] that all the mesons are situated on double
Regge trajectories, which does not necessarily mean that they all correspond to double poles,
as certain cancelling factors may appear in the residues®.

After this introduction we devote Section 2 to a general description of double Regge
poles. In Section 3 we discuss the Breit-Wigner formula and Argand diagrams, and in
Section 4 we arrive at some high energy aspects of the double Regge poles model. In the
Section 5 we present a short discussion of the finite energy sum rules for the double Regge
poles and show the possibility of writing down a Veneziano-like representation for them.

2. Double Regge poles

Our basic assumption is that a scattering amplitude corresponding to the total
baryonic number B = 0 has double poles as its only singularities in the complex A-plane
(4, if non-negative integer, is called I). More precisely, we should say that all the singularities
of the amplitude are such that in their neighbourhood it can be developped into the Mac
Laurent series ending with the minus second power term,

F(A, 5) ~ (ajizis()s))z + XESL) T Fols)+ o @.1)

with f5(s) not identically equal to zero.
The notion of the signature 7 can be introduced in a standard way. Having performed
the Sommerfeld-Watson transformation we find (apart from the background integral)

21 XaRyu | ReiXg, AR X 4, cos ma;
Sl cos 0) = ks Z {_sin 7o t mat, sin® ma; ’ 2-2)
where

X, (cos 0,) = P, (—cos 0,) +71P,(cos 0, 2.3)

and Ry(k,), Ry,(k,) stand for the residue functions. X ; denotes the derivative of X, witb
respect to A taken at A = ;.

It is now easy to find the contribution of a double Regge pole to a given partial wave.
We get

1 R, R

(2.4)

1 Another interesting piece of information concerning double Regge poles is provided by the recent cal-
culation due to Halliday [11]. He shows that the double poles are able to generate themselves through a boot-
straplike mechanism and, moreover, that the condition of such selfconsistency is @(0) = 0.46, which is surpris-
ingly close to @(0) for the “‘classical” 1~ and 2+ trajectories. We are indebted to Dr Bassetto for calling our
attention to this result.



112

where R, = (¢+I+1)R,—R,. We notice in passing that the model constructed here
differs from that introduced by Kreps and Moffat [5], who obtained the double pole by
differentiating the single pole term with respect to « assuming that the residue functions

are g-independent. This led them to a certain relation between the functions R,
and R,.

There are at least two problems connected with the formulae (2.2) and (2.4) which
we wish to discuss here. The first of them is the validity of the factorization theorem for
the residue functions R; and R,. To discuss this let us consider an n-channel problem
described by a certain S-matrix. This matrix can be diagonalized using a non-singular
orthogonal matrix U, S = US,U, where S, has only diagonal elements. We assume in
an analogy to the simple pole case that the leading singularity appears in only one eigen-
amplitude. This leading singularity is a pole of the second order. Assuming that we decide that
the R, function factorizes.

Now we have a priori three possibilities for the next-to-the-leading term, that is for the pole
of the first order. It may appear in the same eigenamplitude which also contains the double
pole, or in another (yet only one) eigenamplitude, or in two or more eigenamplitudes. In
the third case the residue function R; does not factorize. In the first and second case the
principle of factorization holds, but the two cases differ with respect to the properties of the
ratio R;/R,. In the first case this ratio is fixed once for ever for a given pole and does not
depend on the channel to which the pole is coupled. Contrary, in the second case the ratio
might differ in general for two different channels. This is however, impossible since, as
we shall see later, a double pole contribution cannot be made unitary without a single
pole term.

The second problem, which is certainly of great importance for the model, is whether
all the mesons can be situated on a double Regge trajectories, and what cancelling factors
are in fact necessary to get from the model the same spectrum of the particles as the experi-
mental one. It has to be noticed that the signature factor in (2.4) provides us with a single
zero only, so that it reduces a given double pole into a single one situated at the wrong
signature point. In general such poles could correspond to the mesons coupled to the given
two-particle channel through electromagnetic andfor weak interactions only. This would
imply, however, that the residue function R, is proportional to the electromagnetic or weak
coupling constant at least at the wrong signature point. This is certainly not interesting from
the point of view of this paper, so we shall assume that the residues at wrong signature points
have another zero and that the trajectory at that point decouples. Even then, however,
there is still the problem of 0~ mesons, which, again with the accuracy up to the strong
interactions, are stable and have to be described by single poles. This means that the R,
function has at least a simple zero at « = 0. What is most important to notice, is that
even if all mesons situated on a given trajectory were single poles, the conclusions from the
point of view of high energy physics would be different if the trajectory were of the second
order.

In what follows we assume that below the threshold the functions R;, R, and « are
purely real.
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3. Breit-Wigner formula

Starting from the formula (2.4) and assuming that Im « is small and not rapidly changing
with s when Re « is close to an integer ! we can arrive at the Breit~-Wigner formula for the
double pole,

- 1 .
Y =g (et 1) = —F—— 4 B 3.1)
s,—s—-z-[’ (s,—s-—2—F)

The formula (3.1), as is well known, leads to a non-exponential decay law [12].
A priori, both constants y, and y, may be complex. The only requirement, which
could be important here, is the unitarity condition

/12 <Imf. (3.2)
Let us introduce dimensionless variable x and constants ¢y, ¢yt
2(sp —s) 2y 2y
x:———'T,—, clz—Fl3 6’2:72‘. (3.3)
Then
B-wW _ G % _
L S o 34
Clearly

1 .
| fil2 = e [ley|2(1 +22) + ey 2+ 2Re (e +2 Im (c5¢)],

Imf; = _;cz——li—T)? [Re ¢; 1 +2%)+ Im cpx(x2+1)+ Im cy(x2 —1) +2 Re cx],  (3.5)

(

Re f; = [Re cpx(1 +x2) — Im ¢y (224 1) + Re cy(x% —1) —2 Im cpx}.

1
(x2+1)2
The first point we would like to discuss is a possible appearance of the two peak structure
of | f112. It exists if the polynomial

Re (cye) (1 —3x2) —x(1 +x2)|cy |2 —2xlcy|2 —4x Im (cye) (3.6a)

has three real roots. It is easy to check, that the necessary (but not sufficient) condition for
that is
3 Re? (chey) > Joy/ley 2+ 2legl?+4 Im (e (3.6b)

The double peak structure implies then a certain relation between the phases and relative
magnitudes of ¢; and ¢,, which, as we shall see, is not always fulfilled. In particular, we
expect that in both cases |¢|> lc,] and |c;|>> |y a single peak structure will emerge.

Let us now examine the unitarity condition (3.2). It is fulfilled for a certain , if for
that x

v3 Im ¢; +22(Im ¢, +Re ¢; —|¢g|?) +x [Im ¢; +2Re ¢, —2 Re [(cjey)] —
—le;|2 —lcgi2+Re ¢; —Im ¢, —2 Im (c3c;) > 0. (3.7
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The condition (3.7) can be fulfilled for all x, if one of the two possibilities holds, either:
Imc¢; =0, Imcy+Rec; = |y]% Recy, = Re (cey) (3.83)
and
lea)2+2 Im ¢, +2 Im (c3¢p) <O (3.8b)
(if in (3.8b) the equality holds we get a purely elastic amplitude for all x), or
Ime; =0, Imcy > Regy{(Re¢; —1),
(Re ¢)? < (Re ¢; —Re? ¢; +1Im cp)(Re ¢; —Im ¢y). (3.9
In the first case, as is easy to check, we obtain
Rec; =0, Imcy = Recy(Re¢; —1), 0 <Re¢; <2, (3.109)

which means, that one of the zeros of the polynomial (3.6a) will be situated at x = 0. We
will call such a case ‘‘symmetric”.

If elastic unitarity holds, then either (1) Im ¢, = 0, Re ¢; = 1 (which corresponds in
fact to a single pole with purely elastic coupling), or (2) Im ¢, = Re ¢; == 2. We see that
the purely elastic wave in the region of a resonance has to show a symmetric double peak stru-
cture. The distance between the two maxima is equal to 4 = x_, (2) — %,,,(1) = 2 (Fig. 1).

Imf,
. i, P=Imf,
u/ \\ />K\Re f(
’ /1 x -
o N o
a b

Fig. 1. The energy dependence of | 3|2, Im f; and Re f; is shown in Fig. 1a in the case of a purely elastic double
pole. In Fig. 15 the Argand diagram for that case is presented

a b
1
Fig. 2. The same as in the Fig. 1 but for the inelastic double pole, assuming that 0 < Re ¢, < 2— V_-z—

In the inelastic case we may get both single and double peak structures, depending
on the value of Ree;. If

1

Vz

0 <Reeg <2—
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the peak is single. It should be noticed that the double peak structure does not necessarily
correspond to more than one maximum of Im f;. This may be seen on Figs 2-5. It is interest-
ing to notice that the inelastic cross-section proportional to Im f;—[f)|2, shows always

only one maximum centered at x = 0.
An even more interesting case is described by the conditions (3.9). Now Re ¢, does not

necessarily vanish which means that the point x = 0 is not an extremum of |f|? (an

Imv; ,,aak\
7T\ /
// \ ]
/ 4 Z\X ‘\ !
7 /
/’/ -~ \\\f?\e.fl _ S e
‘\\‘\‘_—”’, X Pe fl -
a b

1
Fig. 3. The same as in the Fig. 2, but assuming that 2 — 1—/: <Rec¢, < 3
/2

1 AImf,
~ I/fp\ﬁ /’— -~
VNS 2N / N
/ \ / \
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2 - \
¥ 12 R Re f \ /
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\\ /// X Re ’;
a b

X Ref,

3
Fig. 5. The same as in the Fig. 2, but assuming that Y < Ree¢ <2

“asymmetric” case). A complete discussion of the conditions (3.9) in terms of the three
parameters is useless, and we limit ourselves to a special case, which is Re¢; = 1, Re,
= Im ¢, = 4. In that case, as can be seen from Fig. 6, we get a clearly asymmetric structure
for the elastic cross-section, showing only a trace of the second peak. Moreover, the main
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maximum is shifted by about 0.6 I" (which may well correspond to 60-80 MeV) from the
position s = s,. If we now look at the inelastic cross-section, we see that it shows a very
symmetric double peak structure. We see that in general the peak in two different channels
may have completely different shapes. In particular, it is possible to observe a double peak

Im f,-if 12
*x,

x

"%
o T
Y e '
-V5 -2

~

Fig. 6. The same as in the Fig. 2, but in the “‘asymmetric” case (see text)

structure in one channel and a single peak structure in another. This fact strikingly resembles
the situation encountered in the 4, meson decay, where two peaks are observed in the gz
decay channel and only one in the KK decay channel.

Of course the examples discussed above do not necessarily correspond to reality and
the conditions we have imposed to get them are certainly too strong. We demanded the
unitarity condition to be fulfilled at all the x values which is not physically necessary. In
fact this condition should hold only above the threshold, that is for x lesser than a certain
positive value x,. I such a case solutions with Im ¢; > 0 can also be constructed. Moreover,
we should not claim that the Breit-Wigner form of amplitude (3.1) is valid for all x > xg,
but only in the vicinity of the resonance. Then also the solutions with Im ¢; < 0 could be
allowed. In this case no qualitatively new effects appear as compared to our previous dis-
cussion.

The last comment we would like now to make concerns the narrow width approximation
for the double poles. It is clear that in such an approximation we should arrive finally to
a stable particle with a zero width. However, a stable particle has 1o be a single pole. This
means that in the narrow width approximation we should consider the y, coupling constant
as proportional to I” and vanishing with it.

4. Double Regge poles and high energy behaviour

Many of the formulae of this Section have been already obtained by Gatto [4]. Neverthe-
less we quote them here partially for the sake of completeness and partially to use them in
further discussion.

Let us introduce two factors connectel to the signature 7 (we change s <> ¢t):

1+7exp [—imai(t)] _ 7(v+tcos ma;)
sin 7e; > M= sin? wa;

£ = 4.1)
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Then, introducing the invariant amplitude A(s,t, u) = 875Vt—f(/£,, cos ,) and taking the
high energy limit in the formula (2.2) we get

A(s, t, u) = 3] s™[Br(€,(8) +Bo(D(€,(8) In s — n,(1))] (4.2)

§
since

ig% = Ins-s%[l+71exp (—ina)] —its™mwexp (—ina,).

It should be noticed that the amyplitude (4.2) is not proportional to the signature factor &,
so that the phase of the omplitude deyends not only on the trajectory & but also on the
residue functions .

It is now easy to calculate the differential cross-section for a process dominated by the
exchange of a double Regge pole. The formula reads

2a(r)—1]
(;—? - i“—“ [(1+72+27 cos ma) (B + B, In s)2-

sin®m e

731 s )2 1+ ST
MHS,g'z(-}.—rcocrz) —nrﬁz( -7 cos ma)?

sin? wo sin o

(B1+B2 In 5)] (4.3)

so that the total elastic cross-section behaves asymptotically like s#*®~1 In 5 assuming
that f's are slowly varying functions of their argument.

The total cross-section for the scattering from a given initial state is dominated by
the contribution coming from the exchange of the Pomeron. Assuming it is a double pole
we would get an asymptotic behaviour of the total cross-section proportional to In s, which,
even if not excluded by the present data and consistent with the Froissart bound, seems not
to be plausible. If the Harari [13] conjecture concerning the dynamical origin of Pomeron
were true, we would have a basis for treating this singularity in a distinguished way as
compared to other “‘mesonic” trejectories. In such @ case the asymptoiic behaviour of the
total cross-section might be still constant.

If we calculate the ratio of the Reerl to the Imaginary part of a one-pole dominated
amplitude

__Red, _ 1+7cos za [(BL+ B2 In s) sin 7w — 7w f,)
~ Tm A, sin? mor —7(By+ Py In 5)

(4.4)

we see that this raiio in general tends to a constant except for the case of the Pomeron
exchange dominated yprocesses, when y — (In s)=1. This means that the limit 0 is ap-
proached rather slowly.

It is also ecsy to calculate the velue of the polarization for such processes like m—N
scattering. It is now in general different from 0 even for a one pole exchange,

do P [1+T cos T

sinf ma

BIBE — 5(1)ﬁ(2))] s2lan)—1] (4.5)
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where the upper index denotes two different spin channels. It is clear that P does not vanish
if the ratio 8,/f, can change from one channel to the other, which excludes the possibility
that only one of the eigenamplitudes is singular, as discussed in Section 2. We also see that
the polarization as compared to the differential cross-section vanishes only like (In 5)-2.
Indeed, the present data for the polarization of the sz—NN charge exchange do not show
any strong s dependence [14].

The lack of full factorizability has its consequence in the fact that relations like
(012)% = 04,05, are now absent, if not in the region of the ultrahigh energies where the In s
term dominates.

The sense — nonsense mechanism does not change very much as compared to the
single pole case, with the only exception that the two residue functions have to be treated
independently. It means, e.g., that they may choose different mechanisms at the points
a=0 -1, -2, ...

Although we postpone a detailed numerical analysis of the model to the forthcoming
paper we wish to give here a brief example of how the model works. It is well known that
the phenomenological fits to the data do not fully confirm two basic assumptions often made
in a theoretical analysis, namely the straightlinearity and degeneracy of the leading meson
trajectories. In particular the A, [15], 0 and w [16] trajectories are best fitted by rather
curved lines dispersed at ¢ = 0 between approximately 0.3-0.6. We shall now present
a numerical argument that if the data are interpreted in terms of double poles, the trajectories
can be fitted by straight lines in a quite large region of ¢ values. By saying that, we do not
intend to convince anybody that the trajectories are straight lines everywhere, since they
may be curved by unitarity corrections. We only wish to raise the problem, what should
be the first approximation and what may be left aside for the moment as a correction.

Let us take as an example the A, trajectory. The fit obtained by Phillips [15]

1.35

%=1+ 12034

gives a4 (0) = 0.35, which is quite far from the degeneracy with, say, «,. But let us assume
the trajectory to be double. In such a case e.g. the differential cross-section for the forward
scattering of the process dominated by the A4, exchange (like #+/N — 5+ N) will be given
approximately by (we set @, (0) =4, v = +1 and y = $,(0)/5,(0)):

de 1

7t 20 +ylns)2+a2p2 —ay(l+y In sy, 4.6)

whereas the observed energy behaviour is, as follows from the quoted fit, of about s=13

(we assume here as a rough simplification the elastic type kinematic relations). At first
sight logarithmic factors in the nominator of the formula (4.6) make the situation even worse.
It is, however, not so bad. What we need in fact is that the factor in the square bracket
in (4.6) be a decreasing function of s. This requirement is fulfilled if

s ny —4
In (So) < i
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Taking the scaling factor 54 = 1 GeV2 and y small negative we see that the above inequality
holds in a very large region of s values (e.g. for y = —0.2 it holds for s & €% GeV?2 and for
y = —0.1 fors & €% GeV?), certainly larger than that covered by present experimental
data. To be more specific let us assume y = —0.1, Then, if e.g. for s = 10 GeV2 we have

%%_ ~ const - 0,15, we get for s = 50 GeV? %:— ~ (the same constant) - 0.02.

One may get almost the same decrease taking %~ s~13, This example, even if
2
oversimplified, shows that the linear trajectory for 4, degenerate with the p trajectory can
be reconciled with the data. Moreover one should take into account a possible displacement
of the observed position of the resonance maximum as was discussed in Sec. 3.

5. Finite energy sum rules and Veneziano representation

In this Section we come to a short discussion of the finite energy sum rules and a possible
way to write down a Veneziano-like representation for the amplitude of the process dominated
by the double Regge poles.

The derivation of the FESR follows in exactly the same way as for the single poles [17].
We start with the superconvergent amplitude f = f—R, where R contains by definition
all the double poles which have & > -1 (at a given point t). We may then write

jlm}'(v)dv =0= f[lmf(v) — 219%(By+ B In v)]dy,

which finally leads us to the result
N

f Im f6)ds = ¥ %ili [ﬁ1+ B <1n N— 7.%)] , 5.1)
1)

where the sum contains the contribution of all the double Regge poles. Assuming that for
some poles 8, = 0, we may say that (5.1} contains also all single Regge poles which might
be present in a given case.

Having written the FESR for the double poles we may easily repeat the calculation
done by Mohapatra [18] to show that trajectories of such poles cannot be straightlinear
if the number of trajectories is finite. The only (obvious) difference between the result
obtained by us and by Mohapatra is that in our case the elastic width behaves as a constant
when s — oo, instead of vanishing like (In s)~*. This result, however, has a doubtful meaning,
due to the fact that the elastic processes are dominated by the Pomeron exchange, and the
Pomeron singularity, as we mentioned in Sec. 4, probably should not be treated as a double
pole.

Let us now discuss the possibility of writing down the Veneziano representation for
the double poles [19]. An obvious complication is that the Veneziano amplitude deals with
purely real trajectories which then correspond to the zero width resonances. As we mentioned
in Sec. 3, in such a case double poles should reduce to single ones. The problem may be
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stated in such a way: is it possible to have-a typical double Regge pole behaviour in the
high energy region in the crossed channel having at the same time only single poles in the
direct channel. We show that this is indeed possible.

In order to construct the Veneziano representation let us first notice that the function

1

By(x, B) = f 7% 2 x(1 —2)"F "2 1n (1 —x)dx (5-2)

0

has the following properties:

(I) It is totally crossing-symmetric under the exchange s < ¢;
{2) It has double poles as its only singularities for ¢ = —1,0,1,2 ...
{3) For @ — o it bebaves like

(—@)’[C1(B) +Co(B) In (—20)] (5.3)
where Cy(f) = —Ci(B).

Assuming straightlinear real trajectories, & = a(s) = «y+oys; f = a(t), we get a typical
double Regge pole behaviour. The only problem is to reduce the double poles into single
ones not spoiling at the same time the behaviour of (5.3). This may be done by multiplying
the By, by a certain factor L(x, f), which would give single zeros for « integer and real
being at the same time bounded at infinity by a constant. The zeros should, however, be
absent for a complex a thus giving a double pole back, if Ima and, in the consequence,
I" were not equal to zero. A good example of such a factor L is

L{e, ) == sin ze * sin zf. (5.4)
To remove the pole at @ = —1 we should consider two cases, depending on whether
a = 0 is a right or a wrong signature point. In the first case ¢ = —1 is a wrong signature

point which means that the pole is cancelled by the additional zero contained in the signature
factor. However, in the second case we should modify the representation (5.2) using instead
of it the function By, (ax —1, §—1). This function possesses poles only for « =0, 1, 2, ...,
but behaves at the infinity like ( —a)?~ 1. This means that the function in such a case should
contain a linearly rising factor so that it might be written as L{x, 8) = (¢ +n) sin na -
- {f+m) sin nf, where r and m are {ree parameters.

It is now easy to write down the formula for double poles exchange in one channel
and single poles in another. It reads

1
By(x, f) = [ x* M n x(1 —2) 7" dx (5.5)
0

if the double poles appear in the s channel, and single — in the ¢ channel. The By, function
behaves

for a->o00 like (—a)?

for > o0 like (—pB)*Cia)+Cola) In (—f)]. (5.6}
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The final step consists in writing the full formula for the exchange of the double +single
poles, as postulated in Sec. 2. (see (2.1)). We write

By = fl 5521 —2) P2 A+ Ay In 2] [By(1 —%) + B, In (1 —x)]dx. .7
1]

Setting A4, andfor B, equal to zero we get a single pole exchange in the first andfor the
second channel. The cancelling factors should be, of course, properly introduced here.
To calculate the residuum at a given pole for the amplitude (5.2) it is sufficient to notice

d
that By(a, §) = da df B(a —2, f—2). Since the B function has polynomial residua at the

poles, the same will be also true for the B,, functions. However, the cancelling factors of
the type (5.4) cannot be polynomials since in the contrary case they would spoil the asymptotic
behaviour. We are thus led necessarily to the appearance of the ancestors. This difficulty
is closely connected in its origin to the fact that we are dealing with real trajectories reject-
ing the unitarity condition, which forces us to reduce double poles into single ones.
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