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The helicity crossing relations between the two-body scattering channels and the three-
-body decay channel are derived under the assumption that analytic properties of spinor amplitudes
allow such a crossing. Each relation contains two or three crossing angles.

1. Crossing relations

The crossing relations of the helicity amplitudes for the scattering reactions have been
discussed by a number of authors (cf. Refs [1-13]). All these papers considered the scattering
processes, including two-body reactions [1-12] and many-body production [13].

In the present paper we discuss an important case of the crossing relations between
the three-body decay and the two-body scattering channels.

Among the works studying the crossing between the scattering channels, the most
complete is the paper by Cohen-Tannoudji, Morel and Navelet [5]. It contains the rigorous
derivation of the crossing relations, including the sign of the crossing matrix. The authors
start from the relations between the helicity and spinor amplitudes and derive the crossing
relations using the analyticity properties of the spinor amplitudes, proved by Bros, Epstein
and Glaser [15].

Here we discuss the crossing relations of the helicity amplitudes between the two-body
scattering reactions in the channels

s:2,3>0,1,

t:3,1>0,2,

w: 1,2->0,3
and the three-body decay

d:0->1,2,3

in the case when mg > m;+m,+m, (Fig. 1).
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Fig. 1. The channels for two-body scattering and three-body decay

Fig. 2. Crossing angles represented in velocity space

Our argument is a simple generalization of the method of Cohen-Tannoudji et al.
However, since the crossing properties of the spinor amplitudes were proved only for the
two-body scattering reactions [15], we have to assume that corresponding spinor amplitudes
are analytic in domains big enough to allow crossing to the d-channel from the s-, ¢- and
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u-channels. Under this assumption and using the methods of Ref. [5] we obtained the crossing
relations between the d-channel and the s-, t- and u-channel helicity amplitudes {continued
analytically to the d-channel physical region). They read

Mg, 2, = (=151t 2 Gt b=l 57 6,0 Baaa, X
xd™(x é)ag,‘ss’(ﬁ)w.mélﬂli
= (=D L)Prine AT BT dh(gh)a X
X d*(21) 1:,03,8 (X3)a Magiaga;
= (—=1)F(—1)¥t it thdo 7 & (183,
X d"(%‘l‘)z;a,d"(xg) x;x.ax;z.Mz’Zz;w : (L.I)

Our notation follows that of Ref. [5]. The summation goes over helicities 4y, 4;, 45 and 4.

The crossing angles are the functions of the Mandelstam invariants s, ¢ and u. Their explicit
form is given in the Appendix.

It is possible to illustrate these angles geometrically on the diagram in the velocity space
(Fig. 2) [14].

In the following three Sections we give a sketch of the proof of the formula (1.1). As
in Ref. [5] the proof consists of the three elements:

1. Writing down the crossing relations for spinor amplitudes,

2. Construction of the helicity amplitudes from the spinor amplitudes,

3. Analytic continuation of the two-body helicity amplitudes and calculation of the
crossing angles.

In the Appendix we collect the values of the crossing angles.

2. Crossing relations for spinor amplitudes

We construct the spinor amplitudes for a three-body decay in the similar way as for
the two-body scattering [6]

"ﬂi,A,A,,A,( P1s P2s P> Po)
= <P151A1»P252A2’ Passfi:xlePoSeAQ- (2.h

Assuming that amplitudes A}, 4 4.4, My 4, 4,4, 204 MG 4 4 a4, (describing the two-
-body scattering) are analytic in domains big enough to allow crossing from the corresponding
channels to the d-channel, amplitude .#§ , 4,4, 15 connected with these amplitudes. One has

M fl,A,A,,A,,(Pp Pa» Py Po) = (—1)"M jdoA,A,A,(PO, ~ P15 Py P3)
= (_1)2"/”:1,,14,,,4,141(})0’ — P23 P3, P1»)

= (= 1)l 4, a.4,(Po> —P1> Po> P3)- 2.2)
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TABLE 1
0123 z x5z,
fE6f 111
ffbb 111
fbhfb 111
fbbf 111
bffb 010
bfbf 01
bbff 001
bbbb 000

f - fermion, b-boson

In these formulae factor (—1)%(Z = 0, 1) arises from the change of order of the spinor
indices in the spinor amplitudes and depends on the kind of particles involved in the reaction.
This dependence is given in Table I.

3. Construction of helicity amplitudes

QOur definition of the two-body helicity amplitudes is taken from [5]. We follow their
method to define the three-body decay helicity amplitudes. Our definition consists of the
following elements:

1. We define the helicity frames for one- and three-particle states being in- and out-
-states in the d-channel,

2. Using Lorentz transformations, which transform the standard frame (%, 13, 72, 725)
into these frames, we express the helicity amplitudes in terms of the spinor amplitudes.

The Lorentz transformation is completely defined by its action on three four-vectors.
Therefore in the definition of the helicity frames we specialize only three basis vectors.

Let p; and m; be the four-momentum and mass of the i-th particle. For i =0... 3
we define basis vectors 0 and 2 in the following way:

t(p) = pilm; 3.0
parallel to p; and
ny(p;) = wy 3.2)
orthogonal to the reaction plane. Here
wd,u = 28pvgapipgpg/[@(s’ t)]llz‘

(D(s, t) = 0 is a boundary equation of the physical region. Inside this region @(s, t) > 0,
we choose here, as one usually does, the positive determination for [&(s, t)]1/2.)
The helicity four-vectors for three-particle state [16] are (Z = 1,2, 3)

2, — - pp:
lp) = b)) = — P BB 33)

Po = Py Py t+ps
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For one-particle state (particle 0) we choose (0} to be

2 .

Using functions &, 7, % defined in Ref. [5] we can rewrite equations (3.3) and
(3.4) to obtain

ho) = —2 ™oP1—(Po"PPo

myS n
2 po—(Po " P1)
B(1) = 2 miPo—\Po " PUP1 , 34"
® 5 (4)
mgpo—{Po * PIP
M2) = 2 2170 0 2 ,
) —
h(3) =2 méPo —(Po 'Ps)Ps (3 3r)
ol oy . .
Let Z(i) be a Lorentz transformation such that
zo t(p;)
Z() nat = Wy , {=0..3). (3.5)
ng  \A(@0)

With each of these transformations one can comnnect the two-dimensional matrix L(i) such
that

p'* o= L@)p- oL*(), (3.6)
where p’ = ZL(i)p.

Using these matrices we express the decay helicity amplitudes in terms of spinor
amplitudes (¢ == igy,)
M'f,a.z,,z,(s: t,u) = Dr .(L(O))A,I,D W(L(De) 42,0 ’(L(z)ﬁ)A,z,X

XD '(L(S)e)A,/l,'/”gllA,A,,A.(Pl’ P2s Py Po)- 3.7

4. Analytic continuation

For the two-body scattering helicity amplitudes expressions similar to (3.7) can be
easily constructed [5]. For instance in the s-channel

M; 4, 2,0,(8: £ 1) = D*(L(0)¢) 4,1, D*(L(1)€) 4,1, D*(L(2)) 4 0, X

X DML(3)) 40, 2,4, 4,900 91> 92> T5)- 4.1)
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As it was shown in [5] this expression is valid also after the analytic continuation is performed.
From (3.7) and (4.1) and using explicit expressions for D(g) we get for M?

lllli’ lﬂ
M 40,0, = (—D)F(=)ethtst Wt A= dims= RDo LEH0) L(0) - gya DL ML) L))~ gy s, X

X DL HR)L(2) - aD™(LS ™ B)L(3) )y 2, M, s (4.2)
Index ¢ denotes the crossed quantities (continued analytically to the d-channel physical
region).

. . d » . tc c
Fjor.mulae connecting amplitude Mj,, , with amplitudes My ., and M
are similar.

Ims

Imt

(my=m, 2 Re s {m, +

/?e)\‘

{m2¢m3)1 (mgfm,)) {m, ‘m))" (ma-m‘,)z

Fig. 3. Path of analytic continuation from the s-channel physical region to the d-channel physical region

In these formulae D*(LS~Y(i)L(:)) (r = s, ¢, u) can be determined up to a sign by consi-
dering the basis vectors of the associated helicity frames.
We choose the following path connecting s- and d-channel physical regions (Fig. 3)

s = (2n+1)a+2nae’,

t = —(n—1)a—nae™", 4.3)
where 0 < ¢ <,

a = % (mE+m2+-m2+ml),
n—a big positive real number.

This path connects the point s = (4n+1)a, ¢t = u = —(2n—1)a in S* with the point
s=t=u=ain D. Such a path omits all the singularities of the amplitudes M;,; s
and of the transformation matrices L (i) and therefore leads to the unique determination
of the crossed amplitudes. One can verify that using such a path one ends with a positive
determination of [D(s, ?)]* (assuming @-plane has a cut along the positive real axis).
The functions &5, ;; and %,; do not have left the cut planes, where they have been defined.

Analogous paths can be constructed to join T+ and Ut with D.

After the analytic continuation the s, ¢ and u helicity frames are (index ¢ denotes the
crossed quantities):

Basis vector 0:

—p;[m; for crossed particles (4.4)
p;/m; for uncrossed particles.

t(p) = {



223

Basis vector 2:
n3(p;) = wi = w; = wj, = —w,. 4.5)

(Four-vectors w,, w, and w, are defined as in Ref. [5]),
Basis vector 3:

na(p) = hi(i), (r = s, t, u) (4.6)

where AZ(i) is obtained from the helicity four-vector A(i) in the corresponding channel
by changing p;/m; for —p;/m; for crossed particles in the definition of this four-vector.

Transformations (i) £ (i) (r = s, t, u) can be proved [5] to be the real rotations,
namely

R,(%/") for crossed particles 4.7)
Ry(m) Ry(x,") for uncrossed particles.

#5020 - |
We calculate the crossing angles x."(—% < y:" < m) from the following formulae
cos 2 = (A,
sin x;" = n§,(i)A(D), 4.8)

__{—1 for crossed particles
% = 141 for uncrossed particles.

It can be easily seen from (3.6) that matrices L and —L correspond to the same Lorentz
transformation .. Therefore the determination of the signs %, 7, and 7, of the crossing
matrices is another problem and must be discussed separately. Using methods analogous
as in Ref. [5] we find the signs #,, 5, and 7, to be

/'7: = (_1)23.+25,’
n, = (=1)%F2 (4.9)
Ny = (—1)*t 5,

We redefine the angles y;” in order to tidy up the indices in the crossing matrix. Expres-

sions for g7 through the angles y.” are given in the Appendix.
This completes the proof of the formulae (1.1).

APPENDIX

In the formulae for the crossing matrices obtained from (4.2) we get expressions of the
form d*(x")_y1 () _s_; and d*(x);_; In order to rearrange the helicity indices in these
expressions we redefine the crossing angles, using identities such as

&=y ) = (=D (=2 s (A
(@ )er = (=D @) s
Angles 57 can be expressed through the angles y/” (Tab. II).
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TABLE II
Angles x] expressed through the angles x,”
i
\ 0 1 2 3
r
s n—y z —a—y ——y
t n—y —n—y x —q—y
u =y —n—y —a—=y 4
The analytic expressions for cos y; and sin y; are given in Table III.
TABLE 11T
The analytic expressions for cos x{ and sin xf
r i cos x; sin xy
0 1 0
1 1 0
s
9 . [s+mi—ml| [t+mi—mll+-2m] [mi+ mi—mi—ml] _ 2my [P %2
P T 03 L3 03
3 _ [s+m3—m2] [u+ mE—ml+2m; [mi+mi— mi—m}] 2my [P %
Sz Uoa S ooy
0 s+ mg—mi [t m3—m3] —2mi[m2+- mi—m3—m?] _ 2my [P %
L0 o2 FuT e
1 _ [s+mi—mfl {t-+mi—mi{+-2m} 24 mi—mi—m?] 2m, [P1%
Lo a LaT s
t
2 1 0
3 _ {t+m3—m3] [u+mi—mll4-2m? [mid-m2—mi—m?) _ 2my (D)%
Y37 UsT s
0 [s+ mi—m2] [utm¥—m3] —2m? [m3+- m%— m2—m2] 2mq (D)%
Lor Uos For %os
1 _ [s+mi—mj] [u+mi—m2l4-2m¥{mi-+ m2—mi—ml] _ 2m, {D1%
u Lo U T oy U1
9 _ {f_—{— mE—m3] [utmi—mi]+2m} [mZ4 mi—mi—m2] 2m, (@Y
T g3 U1z T o2 Una
3 1 0
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