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An investigation is made of the possibility of extending a previous calculation of the motion
of Fermions in a linearized gravitational field to particles of higher spin. The Rarita-Schwinger
equations or arbitrary half-integral spin are discussed. It is found that the R—S equations for

spin > £ become self-inconsistent in the presence of gravitational field with other than constant
Riemann curvature. For spin § the equations are seen to be consistent in the presence of an ex-

terior gravitational field in regions where the sources vanish. The equations for the trajectory of
aspin § particle in such a situation are calculated and take the same form as in the spin } case
with the appropriate generator of Lorentz transformations appearing in the spin tensor. The
deflection of high energy spin 3 particles passing near a massive body is computed. Although
the corresponding equations for the trajectory of a spin 1 particle can be shown to have the
same form as the spin }, § cases, it is doubtful whether the result will hold for spins > 3,
except in fields of constant Riemann curvature.

1. Introduction

The motion of spinning particles in gravitational fields has been studied by many authors,
both from the point of view of classical spinning bodies [1], [2], [3] and from the point of
view of Dirac spinors in curved space [4], {5], [6]. By considering the classical equations of
motion, Papapetrou [1] has shown that bodies which possess higher moments than the mono-
pole moment (mass), e.g. rotating bodies, do not, in general, follow geodesics of the metric.
Additional force terms appear in the equations of motion expressing the interaction of the
higher moments with the Riemann tensor of the gravitational field. Pagels {4] has proposed
comparable spin interaction force terms which he arrives at by considering the invariance
properties of transformations between states of spin §in a space with gravitation present.
He further shows from relativistic invariance arguments that massless particles whose spin
is constrained to point along the direction of motion, must follow null geodesics.

In previous works [7], [8] the auther has made a connection between these calculations
and the treatment of the covariant Dirac equation in general relativity. It was shown that
results equivalent to those of Pagels [4] could be derived, at least for linearized gravitational
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fields, from the covariant Dirac equation by means of a WKB-like approximation in which
all#’s in the theory are limited to zero except for the h in the magnitude of the spin angular
momentum. It is the purpose of the present paper to examine the extension of this result
to fields of higher spin.

The achievement of this goal is made difficult by the complexity of the formulations
of theories of higher spins [9], [10], [11], [12], [13]. These theories are generally so complex
that it is not possible to make general statements about fields of arbitrary spin. Instead, it
is necessary to treat the fields for each different spin value separately. One case which at
first seems to avoid this difficulty is the Rarita-Schwinger formalism [12], [14] for half-
-integral spins, and it is this formalism that we consider in this paper. Unfortunately, the
Rarita-Schwinger formalism falls victim to a second malady common to theories of higher
spin. This arises from the fact that, in addition to the dynamical field equations of the
theory, one must introduce auxilliary conditions to project out only those field components.
which refer to the desired spin. A familiar example of this is the vanishing of the divergence
of the massive vector field which removes the zero spin field component from the theory.
In the case of most higher spin theories, when interactions with other fields are included,
the auxilliary conditions and the field equations become inconsistent with one another.
An example of this is the Bargmann-Wigner formulation [13], [15] in the presence of an
electromagnetic (or gravitational) field. To a large extent, as we will see, the Rarita-Schwinger
formalism also shares this defect. It turns out that for spins > § the field equations and the
auxilliary conditions are consistent only for special gravitational fields. Even in the case
of spin § the equations are not completely consistent [16]. It is necessary to restrict ourselves
to a discussion of the motion in an external gravitational field, ignoring the contributions to
the field of the particle itself. Also we must consider motion only in regions outside the
sources of the external gravitational field. Within these limitations, however, we are able
to show that the equations of the trajectories of particles of spin £ are quite analogous
to those for spin . It is necessary only to replace the Fermion spin tensor in the theory
with the appropriate spin § tensor. Tt is easy to show that the same prescription works for
the vector meson as well. If one makes certain assumptions about the field equations for
higher spin fields, the prescription can be extended even farther, though for spin > & these
assumptions are of very doubtful validity, if the space has non-constant Riemannian curvature.

We mention in passing that we are considering. only spin-orbit type interactions of the
particles. We are ignoring here the so-called ‘‘spin-spin’ interactions which arise in certain
formulations of the covariant Dirac theory [17], [18] and which lead to non-symmetric terms.
in the affine connections, and so forth. Such effects, if present, would appear in addition to.
those which we discuss.

In section 2 we develop the covariant form of the Rarita-Schwinger equations for
arbitrary half integral spins and examine their consistency. In section 3 a particular solu--
tion for the free particle spin § equations is discussed. In section 4 we apply our WKB-like
approximation to the covariant spin § equations to derive the equations of motion for
a particle in a gravitational field, and apply this to the calculation of the deflection of such
particles passing at high energy near a massive body. The results and their extension to.
higher spin fields are discussed in section 5.
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2. The Rarita-Schwinger equations

The Rarita-Schwinger equations for free particles of spin s 4+, with s an integer,
are [12}

m
(?’”‘%" W) Yrurtiyeoy, = 0 2.1)

where ¥, ., is symmetric in the s tensor indices p; and contains one suppressed Dirac
spinor index, and the y* are the usual Dirac matrices. We also need the auxilliary conditions

Y tt..s = O- 2.2)
Multiplying Eq. (2.1) on the left by p** and employing Eq. (2.2) and the Clifford algebra of

the Dirac matrices
v =29" (2.3)

produces the additional relations

o Pispgois = 0 (2-4')

Eq. (2.2) and Eq. (2.4) together assure that 9, , . will have just enough remaining degrees
of freedom to describe a particle of spin s-+3.

To extend these equations to a Riemannian space we employ the usual ““minimum
coupling” prescription®. First we replace the Dirac matrices y* by their covariant counter-
parts p#(x) where

{P(), Y(0)} = 28" (). (2.5)
The covariant Dirac matrices are related to the usual ones by the “vierbein fields”
eq(®) by
7(%) = eq(x)y” (2.6)
where
ehl@)ep(x) 1% = g"(x)- 2.7)

As the second step of the prescription we replace all partial derivatives by covarian

derivatives. The covariant derivative of a quantity with one spinor index and a series o

tensor indices is given by

V. Af: =85 +il A%+ (2.8)

+ 84k + T A% —
— I A — T A%+

1 We use the following notation and conventions: The metric used has the signature (4, —, —, —).
Units are chosen such that ¢ = 1. Ordinary partial derivatives are denoted by a comma or by 9,; covariant
derivatives are denoted by a semicolon or by [7,,. Square brackets [ ] denote commutators and braces { } denote
anti-commutators. Greek indices run from 0 to 3, Latin from 1 to 3.

% For a more detailed discussion of the quantities used in the covariant Dirac theory see References [4],
[6] and {19].
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where the I'%, are the usual Christoffel symbols and the I', are the Fock-Ivanenko coefficients
or spin connections. For linearized gravitational fields we may take

1
I'n= - 4 Pua,p0% (2.9)

where we have written our metric in the form

8uw(%) = 1+ hy (%) (2.10)

and neglect orders of h,, higher than the first and where

0= = [y ) = 5 [y vy, (2.11)

According to our prescription, then, the covariant Rarita-Schwinger equations are

(Wr %) Vistty = 0 (2.12)
and
Y i o5 = O (2.13)
Multiplying Eq. (2.12) on the left by p** and using Eqs (2.5) and (2.13) and the fact that
Vy =0 (2.14)
we find, in analogy with Eq. (2.4), that
VoY istys = 0 (2.15)

We must now investigate whether our covariant Rarita-Schwinger equations are still
consistent. To do this we follow Cohen [16]. We will employ the following relations

RS, 9" = —2R%p" (2.16)
where the Riemann tensor is
Rgm’ = ny,v»— ng,y+rgupgv_ rgvrgy (217)
and the Ricei tensor is
RS = g”lRﬁm (2.18)
we also have
R 5V 77y’ = —2R (2.19)
where
R = ghRe. (2.20)

It is further possible to show that
1 ~~
[V/n Vv]yjuly....ﬂs = Z Rgauvye')/dw#m,...ﬂs_

"R/ehm’/’em...us _Rﬁmﬂ”u;e.../lx e _ng‘sﬂ"wﬂll‘z---Q . (2.21)
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Starting with our Rarita-Schwinger field equation (2.12) we write

v (;’"Vu + 1;:‘) (?Vv - _h”i) Visty ..os, = 0. (2.22)
Then by Egs (2.5), (2.13) and (2.21) we have
oy | L e
(2.23)
By equations (2.13), (2.16) and (2.19) and the relation
= P 2 — 2 (224
this becomes
2Rﬁ~eu....m+4g” xv;l‘Rzmkule...us+“‘ +4g* ‘v;”szvwmﬂ..‘.o =0. (2.25)
The first term of this expression vanishes if the Ricci tensor has the form
RS = Agl. (2.26)
The remaining terms will vanish only if the space has constant Riemannian curvature
waqa = _K(gyegm —g/wqu)' (2'27)

This reproduces the result of Buchdahl [19] concerning the compatibility of the equations
of fields of spin > 3/2 in the two spinor formalism. Since for s = 1 only the first term
of Eq. (2.25) arises, we conclude that our covariant Rarita-Schwinger equations are sui-
table to describe the motion of a particle with spin 3/2 in a gravitational field of the
form of Eq. (2.26), that is, in the case in which we ignore the gravitational field pro-
duced by the particle itself and in regions where the stress energy tensor of the matter
giving rise to the gravitational fields vanishes. For spin > 3/2, however, the field equa-
tions are only valid for a very restricted class of spaces.

In the next section, then, we will calculate the equations of motion for a particle of
spin § in an external- gravitational field. It should be pointed out that Cohen [16] derives
a set of spin % equations consistent for any gravitational field, but these reduce to ours in

the case we are considering.
3. Flat space solutions of spin § field equations

In this section we wish to discuss a particular form for free solutions of the spin § R—S
equations

(7’“9/4 - %) =0, (3.1a)
Yy, =0. (3.1b)

A positive energy ‘‘vector-spinor” solution representing a particle at rest with its spin
oriented in the +z direction is given by the ‘“‘product” of a four vector and a Dirac spinor

v = &u4(0) (3.2)
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where the vector part is

(0 i, —1,0) (3.3)

and the spinor is

(3.4)

3]

a specific meaning for the term *‘spin orientation” is given at the end of this section. From

this we obtain the corresponding solution for a particle at rest with its spin oriented in the
direction of a unit vector n, with

(145 ngs ng) = (sin G cos D, sin § sin D, cos 0) (3.5)
by performing a rotation on the expressions (3.3) and (3.4). We find
(0, D) = &(0, P)u. (6, D)

where the vector is

e{f, @) = {0, i cos § cos @ +sin D, i cos O sin D —cos D, —i sin h) (3.6)

V_

and the spinor is

@
(’os%e~ 2
0 i2
u (0, @) =| sin 5 e 2 3.7
0
0

Finally, to obtain the corresponding solution for a particle moving with momentum p and
energy E in the +z direction we perform a Lorentz transformation to a frame moving in the

—2z direction with velocity v = % The result is

LA
Yi(Puw 0, D) = (P, 0 Phus(p,, 0, Pe* (3-8)

where

&(pw 0, D) = — -51n0 icos fcos @+sin D, i cos 0 sin @~ cos D, ~-l-E~51n9
V m

(3.9)
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and where
L@
cos—g— e 2
;2
sin —g- e
E+4+m
urpw 0, P) =1/ 5~ s (3.10)
P b -y
Tim cos5e
_ 2
sin—-e 2
EF+m 2

It is straightforward to verify directly that this solution satisfies the equations (1a, b). Like
a Dirac spinor, our vector-spinor is determined by its four momentum and the rest frame
spin orientation.

We define the adjoint vector spinor

v = ey = euly® (3.11)
since
uu, =1 3.12)
and since
e, = —1 = &', 3.13)
we have
vy, = —L (3.14)

The spin tensor for a vector field is
(5 = 1828, 0487). (3.15)

In what follows we will be interested in the quantities

PS5 Yoo’ P
Sﬂ, = V’Q(_ [ —_ v Pk, 3_16
i iy —p"y") (3.16)
A simple calculation shows these quantities to be, for our solution of the R—S equations,

E

E
S12 = pg; S%1 = — Mg 523 = —

s =Ly 52— —Lony; 503 =0, (3.17)

Similarly, the spin tensor for a spinor field is

i
o = 5 vy (3.18)
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and we will also need the quantities

Yoy
T == L T5
Pz

One can quickly show that, for our vector-spinor solution,

= 54,0'“”15{». (3.19)

2 =S, (3.20)
Finally, if one defines the spin operator for our vector spinor
1
(y”v)ew’ﬂ' = (S””)eoéa’ﬁ’+ 9 nw(zm)a'ﬁ’ (3-21)

where the primed indices are Dirac spinor indices, and if one writes

Fl= 523, &2 — §31. &3 = Q12 (3.22)
then we have
. = 3
(0 Looapy G = bl Yew (0, D) (3.23)
where
Yo (0, D) = £,(0, D)u_, (0, D). (3.24)

It is in this sense that we say that in the rest frame the spin of our particle is oriented in the
direction of the unit vector n.

4. Spin § equations of motion

In this chapter and in what follows we will adopt harmonic coordinate conditions
which for the linearized theory have the form
1 a
hus — 5 Noha = 0. 4.1)

We now begin with our covariant Rarita-Schwinger field equation (2.12) for spin &, that
is, with only one tensor index. This can be iterated to give a second order equation

~ g m?
VA A = 35 e (4.2)
We now write this out in full, keeping only first orders in gravitational field strengths:
PV V0w VY, w0+ Dy pay +ipty Lops, ut

. m?
Y T =y Lo, e = vV Doste, s~y Tistpor — 33 ¥2=0.  (43)
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In harmonic coordinates, defined by Eq. (4.1), and using the expression (2.8) for the linearized
Fock-Ivanenko coefficients, we can show that

i
vl = = g V" 1%hepu (4.4)
We may also write [19]
~y 1 4 1
V.u= €quy®= — 9 N7 hay, 1wy (4.5)
Then using the relation
Py = 9 —id® (4.6)

as well as the harmonic coordinate conditions and the absence of gravitational sources in
the region we are considering, reduces Eq. {(4.3) to

1 i
B¥ i+ Fl #N " Ry, wPa, vt Pl Gng»vﬂ'Pe-

0 m2 . !
=20 e, »~ 55 v2 =0 47)
where the linearized Riemann tensor is
1
Rlvy = Fv}.,;x ,ul y == 2 ﬂea(hva, Au —hvl, p6+h;¢}.,m"‘hya, }.v)- (4"8)

We now wish to discuss the solutions of this wave equation in a WKB-like approximation.
We will limit all #’s in the theory to zero except for those of the spin. The effect of this is
to allow us to go over from the motion of waves to a discussion of trajectories of particles,,
without turning off the effect of the spin on the trajectories. To implement the approximation
we take the Rarita-Schwinger field to be of the form
S(x)
Pie) = A (=)e * “.9)
where A,(x) is a vector-spinor like 9, and S(x) is a real scalar function. Substitution of (4.9)
into (4.7) yields

h2 ih th h
g ( -Al,[b"l‘ S,vAl,y+ S,uvA1+ l—‘ 5 Azy S,”S,yAl) -

1 & ih2
~ 5 SN0+ R gy An+ S O " Rivude 2 — (S,n"’]’ﬁ,.)Ap —Ai=0 {4.10)
clearly the term g""y, ,, of Eq. (4.7) contains no spin interactions. Thus in the contributions
from this term we set i = 0, while keeping, for the time being, the other # terms. We have

vor]

1 4
(g*"S,,,S,,,+1)+ 5 Sv?? am#[

VYo
. h v 770 Py i h? o, Wﬂ“’%] .
+2i — S, ' [{/7’1/)0 5 R . = 0. (4.11)
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This equation represents a Hamilton-Jacobi equation for the trajectories of the spin 2
particles. When we go over to the second order, geodesic form of the equations of motion

in the usual way [8], [21] we find, to first order in gravitational fields,

D . h AgnT h - 1,072 A
—uyc — poeyb rr — 81 Y
7 ¥ +2 n°%u R11¢ﬁ| Ty l + 5 Rgou | v, +

. h2 "‘.’.o-v,u T
+i —s 1" Rim,s [%’—] = 0. (4.12)

whereB- represents covariant proper time differentiation along the path of the particle:
T

D dx#

D o woay .
py A= Wudl) - (4.13)
Consistent with our linearized approximation for gravitational fields we may take the quanti-
ties in Eq. (4.12) which involve the R—S wave functions to be just those flat space quantities
calculated in section 3. We thus write

D h . 1 h2
_ u"+ ";z-' uﬁRﬁ;,f (S"t'f— 52)“') —_ —2‘,—n'§' ’ﬂazR;,-mp, zS;"Z‘” = 0. (49.14')

Kinematics requires that the square of the four velocity »” should be a constant, namely

nu’ = —1. (4.15)
Therefore, we should have
Due
Uy E = O. (43.16)

Multiplying Eq. (4.14) on the left by u,, and using the symmetry properties of the Riemann
tensor leads to
Dur h?

Ug—— —

Dt 2m?2

UR i, ST = 0. 4.17)

The second term here will not vanish in general.

Thus we see that in order h2 our equations of motion are inconsistent. This arises from
the inconsistency in discarding some h’s and not others in our WKB approximation. A similar
difficulty arises in the equivalent treatment of the ‘‘Pauli term” in the iterated Dirac equation
in the presence of an electromagnetic field. As a result of this we discard the term proportional
to h2 and restrict ourselves to first order in the spin angular momentum and the equations

of motion
Duw h

Tt R (szw— %z) —o. (4.18)
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This is just the equation of motion which was derived previously® for Dirac particles [7], [8],
but with the spin tensor S* 41 X* replacing 12Z%_ We are thus in the position to repeat
the calculation of the earlier work in which a high-energy particle with spin is deflected as
it passes near a static massive body. The body of mass M is represented by its linearized
Schwarzschild field centered on the origin of coordinates. The spinning particle approaches,
moving in the +z direction with momentum p ~ E. Its initial motion is in the x, z plane
along the line = b. The spin of the particle is specified to be aligned with the unit vector n
in its rest frame. As we see from Eqs (3.17) and (3.20) the values of the spin tensor S* -1 Z*
for such a vector-spinor have the same values as the spin tensor of a Dirac particle [7], [8]
but multiplied by a factor of three. Thus the deflections of the spin § particle will be just
those of the spin } particle with the spin contribution multiplied by three.
We thus find the deflections in the —x direction to be

so, — 2CM (1— 3h”2) (4.19)

b mb

where n, is the y component of the unit vector n. The deflection in the —y direction will be

6GMh
+ g m

mb?

8D, = (4.20)

Finally, we also point out that, from dimensional arguments, we can see that the contribution

to the deflections which would arise from a term in the equations of motion proportional
2

to h% must contain a factor <——.
m2b?
Since for an electron just grazing the sun o 10-%! we can see that (f) our first order
m
corrections to the deflections are very small and (it) the error caused by neglecting the A2
terms is a factor 10-2! smaller yet. For n; = n, = 0, as for massless particles, we just get
geodetic motion.

5. Discussion and extension of results

The most striking feature of our results for the motion of a spin § particle is the close
relationship to the corresponding results for a spin § particle. The generator of infinitesimal

Lorentz transformations in the spin } case is

4 1 14
(R = 5 ows (5.1)

2 In Ref. |8] it was erroneously concluded that vector particles must follow geodesics. In this paper the cal-
culation was restricted to linearly polarized plane wave states, which, of course, carry no spin. Also the spin term
of the equation of motion in reference [8] has the wrong sign.
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where the primed indices are spinor indices and the unprimed are tensor indices. The
generator for the spin § case is

. 1
(Gi‘/.)a’ﬁ’ea == (Sl"’)eaéa’ﬂ"l' 7 Oja:'ﬁ'ﬂeo . (52)
For the spin tensors which appear in the equations of motion for the spinor and spinor-tensor
fields, respectively, we have

2. AGC) v aws
1 5 9(C)asvs (5.30)
2 YaPa
and
WeAGCEY a5
_;_ZMV_I,.SI-"’ = y‘a (G:ﬁ,)zﬂea’/)ﬁ . (53b)
YaYaa

This suggests that one could use the following-prescription for finding the equation of motion
résulting from a field @ with adjoint @ representing spin -n2~ where n is an integer: Take
the Eq. of motion to be just Eq. (4.18) with the expression S+ X* replaced by
_ $G,®

P

o (5.4)

3 . . . . n
where Gf,jz is the generator of infinitesimal Lorentz transformations for the spin 3 field .

For the vector meson (spin 1, n = 2) case this can be straightforwardly shown to be so.
The treatment is just the same as our Rarita-Schwinger case, but leaving out the effects of
the spinor index. The spin tensor is just

g = St (5.5)

It also follows that the anomalous deflections of the high energy mesons grazing the sun
are just twice those for spin } particles (ignoring the effect of different masses). This form
of equation of motion holds for higher spins too if, ignoring the question of supplementary
conditions, one assumes that the dynamical field equations are just the usual covariant
extension of the flat space Klein-Gordon equation, i.e.

VYD, =md, (5.6)

wY...

If the field represents integer spin s, then there are s tensor indices g, #, ... If it represents
spin s+3 there will also be a spinor index. The form of the covariant derivatives is appro-
priate to the number of tensor indices and the presence or absence of a spinor index. From
this assumption one can show that the equations of motion for the particle are just Eq. (4.18)
with the spin tensor (5.4) instead of (5.3b). Our assumption (5.6) can be shown to be con-
sistent with the auxilliary conditions for the fields with spin <§, but for spin >} its
validity is not generally clear. It may be that in order to obtain consistent equations it is
necessary to use a more complicated generalization of the flat space field equations. For
a discussion of the spin 2 case see Cohen [16].
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