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HERMITIAN SYMMETRY IN EINSTEIN’S UNIFIED FIELD THEORY

By A. H. Kvorz
Department of Applied Mathematics, University of Sydney*

{ Recetved December 15, 1969)

The result of hermitian symmetry in Einstein’s Unified Field Theory is examined in terms
of pseudo-tensor UZ, for which the Ricei tensor is hermitian symmetric. Einstein’s expression for

U:;,, is shown not to be unique. It is also shown that there is no linear expression for the affine
connection in terms of such a pseudo-tensor which would lead to invariant symmetry conditions.

1. Introduction

The requirement that the field equations should satisfy the condition of a new kind of
symmetry, called ‘‘hermitian”, plays a crucial part in Einstein’s Unified Field Theory
(UFT) (Refs [1], [2], [3] and [4]). In general, the symmetry is defined in the following way.
Given a (tensor) expression

A, = A, 8.4, 1"'26, I

where g,z is a metric tensor and I e’},, the affine connection, and Greek indices go from 1
to n (or 1 to 4 if we restrict ourselves to a four-dimensional space time), its conjugate is
given by

¢ A
Ay = A, 80> Tops )
If A = A, the tensor is said to be hermitian symmetric, or just hermitian, and if 4 = —4,

hermitian skew symmetric or antihermitian. Any tensor can be invariantly separated into
a hermitian and an antihermitian part:

A4 = HA+A)+3(4—-A). 1)
It is clearly not necessary to restrict the definition to tensors of rank 2, except that only two

indices (both covariant or contravariant) take part in any given hermitian operation. The
reason for the name of the symmetry is simple. If g, and I, are allowed to be complex
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(as in Refs [1], [2]) the above symmetry coincides with ordinary hermitian conjugation.
Indeed if

@y, = by tic,,
with b and ¢ real.

~

a,, = b,,—ic,,

and @, is hermitian if, and only if, b,, is symmetric and c,, skew symmetric. This is what
Einstein and Straus did in taking

Buv = B8y L= Ioy+il,

uv?
(a line under two indices denotes symmetry and a caret, skew symmetry). The importance
of the concept lies in that it restricts the manifold of possible solutions and expresses (Ref. [4])
the invariance of the field laws with respect to the sign of electricity. It represents therefore
an anchorage of a hypothetical (and complicated) mathematical structure of the theory in the
physical reality. It is responsible for the selection of equation

gyv;l = gyv, l_l—z,lgov_ I‘;vg;m = O’ (2)
as a definition of the generalized (nonsymmetric) affine connection. Equation (2) alone, and
not, for example,

Buvia = gpr,i_[‘:hgav— I":Ag;w =0, (3)

++
is hermitian symmetric.
It is of some importance to the present investigation to recall that Hlavaty (Ref. {5])

proves that equation (3) has a solution if and only if Det gs/Det g is a constant. All this is
well known. It is equally well known that the Ricci tensor of the theory

Ruv = —Igf,c+mu,v+r ;epgv“_ ]tvrge’ (4)
is not hermitian, the condition for it to be so, reading
r,+r, ,—2r,r,=o. 5)
In Ref. [4], Einstein and Kaufman introduce a new quantity Uf, defined by
I, = U~ 3 ULd, (6)
so that
Iy,=—31U% and U, = Ii,—TI3,6%
In terms of U, the Ricci tensor becomes
Ry = —~Uput Ut § Ul o

and is clearly hermitian with respect to U3,
On the other hand, the equation (2) becomes

g;a,l_- D:lguv—_ LY»gya + %( Lzzeg).v + L’gkgw) =0 (8)

and is nonhermitian as we can easily convince ourselves.



263

Moreover, the condition for (8) to become hermitian is

Ui+ Uieio— Up8a— Ui = 05
or
Uzgg}.w_Uzggyl_*_Uygh_*-Uvgu}.'*—zUlgpv = Ov (9)

where

UA = %(UEQ‘UE;A)-
It should be observed that unlike

r, = % (Fgg_ gl)'
U, is not a vector. In terms of the affine connection

U). = - %(311;0—{_}1@)'

and
Upe = — %(311&+5P”).
Hence, the condition (9) reads
Ff,_‘,g,, + I?ggw'{' 1@l g, —2lhgat+lg,) =0 (10)

This is clearly not invariant or tensor equation since the quantity in brackets is a tensor. .
If we impose Einstein’s condition

r,=o, (11)

which is identified in the UFT with the second set of Maxwell’s equations (it can be proved
directly from equation (2), by the method familiar from General Relativity and used to
obtain Christoffel brackets, that

(l/—gg#a)w =) —-gg* I,
where g = Det g,,, see Appendix), equation (10) becomes
Fg_“gb +I‘§£_gm =0 (12)

It is these consequences of switching the hermitian requirement from g,, and I}, to g,,
and U%, which prompted the present investigation. Einstein and Kaufman claimed the
latter to be the “‘natural” variables for investigating the unified field. The above difficulty
shows that this is hardly the case and the negative conclusion of our results throw consider-
able doubt on the usefulness of the hermitian concept in the theory as hitherto formulated.

2. Il = UL—1%.8;

In this section we investigate further the consequences of using Uz,in hermitian conjuga-
tion. We prove first that it follows from (12) that

g = const. (13)
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Indeed, if g # 0, there exists a tensor g*” such that
88 = 8% 8er = 0"
Hence multiplying (12) by g” and contracting over ¢ and 4,
5I%, =0= 1%,
But from (2) - -
I Eg 99” In)/—g,

and therefore (13). This a severe restriction on the space used in UFT.
The reason why U-substitution leads to a noninvariant condition for hermitian symmetry
of equation (8) is that in constructing hermitian conjugates

ve, > Ug

ew’
and whereas U2, = 31, transforms as a contracted affine connection,

Ue, = —2r,

v
is a vector.
We can show further that equation (9) implies

ve,=0=1Ue

oun>

(14)

and therefore also equation (11) (together with g = const). Thus, multiplying (9) by g*
{and summing as indicated),

10U, = 0. (15)
Hence (9) reduces to
Uﬁeg ng1 =0, (16)
or
g gglv = 4'U§_g-
Hence
878"y Uy = 4Usg™ = 838" UL, = g Up,. 17
But
Uien8” = 8" Us&ias
or

55U%, = 8"Vt
from (16), so that, contracting over ¢ and 4,
U;Q£ =13 g) ngi.
Substituting into (17)
AULE™ = 1 g U, — 1 56" US, = L™V,
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Hence U, = 0, and in view of (15), (14) follows. (14), therefore, is another form of the
requirem;nt that (2) should be hermitian symmetric with respect to U fw It shows, however,
that g,, and U?, must not be used as variational parameters in deriving field equations
contrary to the process adopted by Einstein and Kaufman.

The meaning of hermitian invariance is best shown if we revert to complex quantities
and write

A A L cOA TTA __ 1A TR _ .
Fuv = va+lev’ U;w - V;w+lW/w’ g/w - g;_;r+lgpv
P, @, V and W being real. Then, retaining the relation (6} of Einstein and Kaufman,
2 3 v
w = Wm_— § Wf@é,
must be a tensor if we restrict ourselves to real transformations of coordinates. In that case
Pﬁ,, is a connection and P;;, =V ig_ %(Vﬁeéﬁ = eréi), also a tensor.

Hermitian symmetry requirement of equation (2) then leads to the following relations
between Pﬁ, and wa:

Pty + Pt = Ot + G 18)
Pt +Pinguy = — V=i 19)

If we assume, as is necessary for a meaningful application to physics, that Det g,, # 0, (18)
can be solved for P}, and (19) for Qi, to give

Pl = 50280+ Q)
and
b, = P, + Plg,),
where

gy_a v 6#'

These relations are independent of (6) which we are now going to show to be non unique
as far as making R,, hermitian symmetric is concerned.

3. 4 new ‘“‘natural*® field variable
Let
I, =Uu.,—3Uis—3 Usdh (20)

»

A straightforward substitution into (4) gives
R,=—-U,,+3(,,—U,)+U,U;,— 3 U,U.,. (21)

uvya LN

Only the bracketed terms need to be examined for hermitian symmetry. However, undre
the conjugation U, - —U, first and subsequent transposition of ¥ and p returns the ex-
pression to the original. Hence R, is hermitian symmetric with respect to U;, and providing
(20) can be solved for U%,, these variables will be just as “‘natural” as Einstein’s.
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Contracting (20) first with respect to A and », and then over A and u, we easily find
that
Up = o= § (I8, + T, 60)— 3 (T8~ 1,8)). (22)
Hence U7, is well determined. We may note that if the last term in (20) is replaced by + } U6,
or +1} U‘,(S:, such a solution cannot be derived. — %Uyéf is possible but R, then ceases

to be hermitian symmetric.

It remains to see now what happens to equation (2). The condition that it should be
hermitian symmetric becomes

Uéqg).v“— Uiggpi + 2( Uyg)& + Uvg;ul + 2 Ulgpv) =0. (23)
Multiplying by g*" and summing as indicated,
Ul = 0,

so that {23) reduces to

that is (16). Hence

and therefore, from (22),
I,=0=1I}

)
as before. The last equation implies, of course,
£ = const.

Hence our new variables suffer the same deficiency as Einstein’s and Kaufman’s.
In the next section we shall consider, therefore, whether a linear substitution of the
above kind can exist in an unrestricted space time of the non-symmetric theory.

4. A general U-substitution
The most general linear relation between Pf,, and a Uﬁ, variable is of the form
I, = Ul +a, U 0k +a,Us,8h+ B, UL,8, +
+ﬁ2Ugvéz+71Un6i+YZUvaz’ (24)

where a, B, ¥’s are constants. To be of any use, (24) must be solvable for U%, in terms of
the affine connection. If we write

A - 1+4a1+“2+4ﬂ1+ﬂ2$
B = 1+4a, +a,—4f;— o +4y; +7as
C = 1+a;+4a,+p +46,, 29)
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and

= -‘—1 “{"“1 +4‘“2_51—4382 +y}. +4y2’

the condition of solvability is easily seen to be
BC—AD +#0. (26)

This is then the first requirement we impose on (24). The aim is to transfer hermitian condi-
tion from I i, to Uﬁ, in such a way that R, should become hermitian symmetric with respect
to Uf;, and that the condition of symmetry of g,,., with respect to a joint transposition of

&= gm—{—igm) and U},, should result in a tensor equation. Actually, since the latter is
necessarily an algebralc equation, it is sufficient to ask that the part of R, in which deriva-

tives of I, appear (in other words, =TIy, , +15,,) should be hermltlan symmetric.
We can prove now the following theorem.
Theorem:

There is no solvable substitution of the form (24) which satisfies simultaneously
a) the condition that Bur; 2 should be hermitian symmetric with respect to & and U
is a tensor equation;

b) —I7, ,+17,, is hermitian symmetric in U;,. The proof is elementary though
somewhat tedious. It depends essentially on an almost self-evident
Lemma:

A linear form

A = (I»F le+b-z1§g gy +CFQ gyl’

where a, b and ¢ are numerical, is not a tensor.
A necessary condition for L,,; to be a tensor can be written as

zj: (a af’tjx"‘ B+b Qx?:;:c" Oute Qx?:;:c"‘ 60) =0
whence
a=b=c=0
Let us write
I, =Ul+4., 27
and let 4}, be obtained from A%, by letting
Uje > U3, Uy > —U,.

Then, g,,,; will be hermitian symmetric if
il

(A:l_jfu)gm + (Agv_A:l)g;w
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where
M = ay +f,—a— Py,
N =oa;—f +y1+%—Bs+y,

By our lemma, (28) will be a tensor equation only if 45;— 47, is independent of I}, and this
gives N

M(B—D) =0 = N(4—C), 29)
This gives four alternatives
i) B=D,4=C,
i) M=0,N=0, (30)
i) M=0,4=C, (or Uall,
iv) N=0,B=D, (or %, I').

The solution of (22) can be wirtten in the form
U,= RIu+ST,

Us, = PI%+QT,

where
_ B-D _ _ _B+D __4-C _ A+C
P=t—ap> ¢~ “w—ap’ B~ ~w—ap °~ —ap
Furthermore, the antihermitian part of — Iy, 417, is
K(Uzg,v_ Uie,y) +L( U[,c,v+ Uv,,u)
= 2LRI%,, +(KQ+LS)I, ,+(LS—KQ) T, ,, (31)
where
K = 1430, +2a,+38,+28,,
L = 1+43a,—3p;+3y;.
(31) is a tensor if and only if
LR=LS=0,
so that either
L=0 or R=S=0 (32)

Also (31) vanishes identically (requirement b) of the theorem) if either

K=0 o @=0. (33)



269

It is now a matter of elementary algebra to show that every combination of the conditions
(30), (32) and (33) necessarily contradicis (26).

Heuce the theorem is proved.

5. Conelusion

The theorem proved in the preceding section implies that it is impossible 1o find an
expression for the affine connection ]'f;y in terms of @ new variable Ufw to which the opera-
tion of hermitian conjugation could be meaningfully transferred. We regard here as meaningful
only an invariant condition in an unrestricted space time. We have seen that ‘‘natural‘
variablesx U,’;,,, that is these for which R, is hermitian symnetric, exist in spaces in which g
i= a constamt. It would be premature perhaps to regard these as necessary in a unified field
thieory although it might be alluring to do so. (Of course, all that we require is the existence
of a coordinate =ystem in which g is globally constant.) In a way, this would explain why
electromagnetism i= essentially a flat space theory.

On the other hand, it seems necessary to apply the requirement that g,,.; should be
hermitian symmetric with respect to the transposition of g, and Uﬂvif we decide to use the
latter. Otherwise, there could be no meaning given to the field equations derived in terms
of them from a variational principle (Ref. [4]). Uiv and ]1;1,, are clearly not equivalent para-

meters. We cannot rest satisfied with baving R?, hermitian with respect 1o a U-transposition,

. . : . e . 7
and g, with respect to a transposition of g, and I,

There ix yet another aspect of the negative theorem of section 4. It is well known that

the cquation
Pﬂ =, (11)

cannol be derived from the remaining field equations of the field theory. The best we can
do is to obtain

1. r, =90,
or alternatively
(L-’J"{’(R/lnr_v' R,uu) = 07

where RIU, is the hermitian conjugate (with respect to ]’;'l,) of R, . There is, likewise, no
straightforward way of obtaining (11) from a variational principle so that the compatibility
of the field equations including (11) could be assured. I now we were able to prove that no
algebraic expression for I"?, in terms of an U,‘n, exists which satisfies our theorem, the result
could be interpreted as an argument that (11) can be adjoined to the full set of field equa-
tions. We have only shown that there is no such linear expression. This is a strong encoura-
gement to assert the general conclusion but not its definite proof. The existence of a nonlinear
substitution would enormously complicate the field equations and remove them even further
from General Relativity and thereby from physics.
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APPENDIX
A Direct Proof of gvl, = l_,_w (V g ) .
/&
Permuting cyclically the indices g, », 4 in

4 v
g,l(,l —1 /4Agrru—[hrglm - 07

twice, we oblain easily

P ;7 1,08 A8 o . Ef
(&g, 88 g 15 = PV,
where
3 , )
)" e w Sk pCT A,; os AR ¢
I g 8 gvl,c &8 /'lo' STE L go’v,l i

\ . £ .
Forming PY and contracting over f and ».
tad ¥ fw
&G GE Y __ pef
(g +é’)]a—[ﬁ'

But, from (35) we find that

Hence
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