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This paper presents an analysis of the energy spread of the products of a nuclear reaction
in thin targets for a Gaussian — distributed beam of incident particles.

1. Introduction

It is well known that beams of particles from eyclotrons have a Gaussian energy distri-
bution. Scattering on a targel causes the incident beam to become more spread out in energy.
On the other hand, the improved accuracy of measurements in recent years makes it indispen-
sible to have exact knowledge of the energy spectrum of the oulgoing beam.

In this paper the employment of certain assumptions leads to the derivation of simple
formulae which make it possible to calculate the resulting energy spectrum of the outgoing

beam.
2. Monoenergetic incident beam

We consider the reaction A(a, b)B, as depicted in Fig. 1 for two positions of the target.
The following assumptions are made:
1. The target is <o thin that the particle’s loss of energy is a linear function of its range.

II. In the considered range of energy loss we have dE,/dE, ~ const &£ 77,
where £, = f(F,, 0) is given by the well-known formula

Ef = (mp+m)cos 8 (mmyE, )"+

+ {ma’nbba cos? 0+ (nLB + m’b) [mBQ + (mB— m’a)Ea]}] . (1)
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On the basis of these assumptions it ix eazily found that for tranzmi~sion
AE 2y = A v+ A (1—x)
and for reflection
AR (v) = A+ Ayx

where A4 is the energy loss of purticle « over the distance 5. 4, is the energy loxs of particle b
over the distance S, (Fig. 1) and x = OF/S, ix the depth parameter of reaction.

Target

Reflection Transmission

Fig. 1. Geometry of reaction: @ — incident beam, b —— outgoing beam, P -— point of reaction, ¢ — angle hetwecn
target and beam ¢, 6 — angle between owgoing and indicent beam, S

normal target thickness; 5, = Sicos ¢,
S, = Sfeos (B— @) for transmission unel S, == Sjcos (G--¢) for reflection. x i~ the depth parameter for the re-
action, equal to OF:S;

Since tor probabilities relation P(AE)(AF,) = p(x)dx holds, and since p(x) =1,
the spread In the energy of reaction products is given by
P(AEY) = {d(AL)]dx]~4
Thiz given for transmission
(AL = (d~c)~ £ f(v)
and for veflection
PAE) == (d+o)?
where d and ¢ are the maximuwn and mininum values of the two quantities 4, and 5A4,.
For d = ¢ in the trausmission process we get the well-known formula for zero energy
spread (this was derived by Cohen (1959) and Nagib (1960) who carried out a precise analysis
of the spread in energy for a monoenergetic beam)

cos (—g)fcos ¢ = L fnyl,.

Here, 7, and 4, are the characteristic ionization values for the particles @ and b for a given
target material.
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3. Gaussian incident beam

Now, P(E) = G(E,) i by definition a Gaussian distribution with the parameters K2
(nean energy) and G, (variance of the distribution). From the statistical relation P(F))dE,
= P'(E,)dE,, by virtue of assumption I, we obtain P'(Ey) = G(I5), with the parameters
o, = o, and E) = f(E9, ) given by Eq. (1).

The resultant spread due to the Gaussian distribution of the beam from the accelerator
and the linear spread arising in the target for a monoenergetic beam will thus be for trans-
mission

Ep--d

1 \TE nld o
l)(l'jb/) = —(‘ii_c f (I( sz)d]'/b.

Eptc

After transformation of the coordinates this vields

Z4-2g
P(z) = b G("dz
d—c
PR
where
z = (Ey—EDoy L 2 = co;!, 2, = doy !
and G(z') == Gauss function with ¢ = 1.
Stmilarly, in the reflection case we get
Z4-21+2,
1 v
P(z) = —— G(z)dz'.
d+c
z
_— - . 12
Taking the transformation z; = z—z,, where z, = — 5 we have
2it+p
P(z) = L G(z')dz'
' d+c
Zi—p
. . .. . . + 2 Zo—21
both for reflection (R) and transmission (1) with p equal and correspond-
2
ingly.
P(z;) is symmetrical with respect to z; = 0 (z = z). The centers of the two curves
g —Z1+3% S . .
are shifted by the amount z, = — which is equal to the energy loss in the reaction

which takes place at ¥ = §.
From the condition for zy (dimensionless and equal to half the value at half maximum),
P(z; == zg) = $P(z; = 0), we get
2p-t-x

f G(E)dz' = [ G(z')dz
[} x

where zy = x+p. With this formula we can calculate the zy versus p curve (Fig. 2).



278

AN

d 1

I
7 2 2p

Fig. 2. The half value at half maximum of resultant energy spread curve in 0, = 33.1 keV units as a function
of parameter of the *effective’ target thickness
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Fig. 3. Theoretical cnergy spread curves for outgoing beam for (d, p) reaction on 2C with Q= 2.72 MeV,

in Cracow cyclotron. Target thickness (S) absorbs 100 keV of the deuteron energy. Curve R is for the reflection

case (6 = 145° and ¢ = 45°) and curve T is for the transmission case (0 = 145° and ¢ = 65°). Z is given in
¢ == 33.1 keV units
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The half-width of the resultant spread in energy of the particles b is

, solpdds _ ze(p)nda
df — 25y p)os = =2 -
b= 2 = S = o s

where d, and dj are the half-widths of the Gaussian distributions for the particles @ and b,

respectively. The curve for p = 0 is the primary Gaussian curve with z4 = Vm For
growing p the curve remain symmetrical, bul become more spread out (le=s {or transmission,
more for reflection).

By way of illustration ¥ig. 3 presents the energy spread curves for the (d, p) veaction
on 12C with @ = +2.72MeV, ES = 12.7 MeV and d; = 120 keV (data for the Cracow
cyclotron). From Eq. (1) we have . /'2 == 10.585 MeV and 7 = 0.65. 0, = 60 keV - 1)/V2I§
= 33.1 keV is the unit for z defined before. The target thickness (S) is such that 100 keV
of a deuteron’s energy is absorbed during its passage perpendicularly through the target.
Curve R of Fig. 3 is the curve for reflection, with 6 == 145° and ¢ = 45°; whereas curve T’
is the curve for transmission, with § = 145° and @ = 65°. For both curves the half values
at half maximum (z4) are nearly equal to p defined previously (curve R: p = 2.38 and
zo x 2.40; curve T p = 3.40 and zy = 3.40). The shifts of the centers of the curves are
equal to z, (—2.38 for curve R and —8.02 for curve T).

4. Discussion

The assumptions of linear energy absorption and stability of the derivative # in the
region of the resultant spread in encrgy are satisfied well for the ‘thin’ targets used in practice.
Some doubts may arise, however, about the assumyption that the eross-section of the reaction
1s constant in the region of the resultant spread in energy of the particles a. Also neglected
here is the effect of the spread in energy of products which arises in the nuclear reaction
itself. Both of these effects depend on the specific type of reaction and can be treated similarly
as has been done here.
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