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The presently known experimental data on multimesonic decays of ¢ and yx states
are fitted in a constant matrix element quark model taking into account also resonances
and both strong and second order electromagnetic processes. The known data are well re-
produced and the branching ratios for the rest of multimesonic channels are predicted. The
fit leaves about 40% for baryonic and radiative channels in the case of J/¢. The parameters
of the J/¢ decays are used to predict the mesonic decays of the pseudoscalar .. Some multi-
particle production aspects of these decays are also emphasized.

1. Introduction

During the last three years a considerable amount of experimental information was
-collected concerning the decay modes of the charmonium states (for recent reviews of
data see Refs. [1-4]). A large number of branching ratios for the J/yp (3095) state is already
known and there are lots of data also for excited charmonium states like y’(3684), x (3415),
x(3505), 1(3550) etc. A general characteristics of the decays is that strong and electro-
magnetic processes are competing with each other with comparable strength due to the
Okubo-Zweig-lizuka (OZI) [S] rule violation of the strong decays. The majority of decay
modes is in multiparticle channels. This is the reason why the identified exclusive decay
channels make up only a relatively small fraction of the total width. In the best known
case of J/p(3095) decays only something like 259 of the decay modes are unambiguously
identified (the same number e. g. for ¢(3415) is 15%).

In this situation model calculations incorporating present knowledge and predicting
the unknown channels may be useful. A number of authors tried recently to estimate
multiparticle branching ratios of the different particles containing charmed quarks using
some simple models. The first simple statistical model with constant matrix element for
pions was proposed already in the prophetic paper of Gaillard, Lee and Rosner [6]. Other
statistical models, usually with constant pion matrix elements or Poissonian multiplicity
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distributions were used in Refs. [7-11]. (In Ref. [7] the embrionic form of our present
model was used to predict D and F meson decays.)

In the present paper we use a constant matrix element quark model [12-14] to fit the
known mesonic branching ratios of the J/p(3095) and (3415, 3505, 3550) states and to
predict the unobserved ones. We shall consider final states containing pseudoscalar,
vector and tensor mesons only resulting from the OZI-rule violating hadronic and second
order electromagnetic processes. (The interference between the two processes will be
neglected.) The essential features of the model are that we shall

(i) take constant S-matrix element for (pseudoscalar, vector and tensor meson)
resonances;

(ii) take SU(3)-symmetry factors from the quark model (consistent with the OZI-rule

[5D);

(iii) neglect spins and resonance widths as well as interferences among resonances.
The assumption of constant matrix elements for resonances is better than to assume constant
matrix elements for pions [6, 8-11], as an essential part of the strong interaction is con-
tained in resonance formation. Besides, the importance of resonances seems to be a general
trend in multiparticle production (for a recent experiment see [15]). The constant matrix
element implies that the hadronic final state is spherical, there are no hadron jets present.
Hadron jets manifest themselves in ete~ annihilation only at higher energies (about 7 GeV)
therefore at 3-4 GeV the spherical final state may be still a good approximation. Concern-
ing the SU(3)-symmetry factors an explicit example of a detailed quark model with this
SU(3) structure (in first approximation) is given in Ref. [16]. Due to the neglection of
spins from the point of view of the constant matrix element quark model the difference
between the charmonium states is only in mass and in the internal quantum numbers
(G-parity and octet-singlet mixing angle). For the same reason the nonresonant background
in e*e~ annihilation into hadrons also differs only in these respects from the charmonium
resonances [14]. Hence, for comparison, we calculate also the mesonic channels in ee”
annihilation at 3095 MeV (a little bit off the resonance) using the parameters of the
J/p-decay. The mesonic decays of the 1, state (assumed to be the X(2830) are calculated
in the same way.

In Section 2 some details of the method of calculation are given (more details are
contained in the Appendix). The comparison with experiment is in Section 3 whereas
in Section 4 some concluding remarks are collected.

2. The calculation of the branching ratios

The constant matrix element quark model was given in terms of the density operator
corresponding to the final state in Ref. {12] and in the equivalent form of the Hilbert space
element in the space of outgoing states in Ref. [13]. The more conventional way of treating
quantum transitions is in terms of transition amplitudes. This form was given in Ref. {14]
where the applications to multiparticle decays of new heavy particles were also outlined.

In order to simplify things let us first consider the case of a single SU(3)-nonet of
final state particles, say pseudoscalar mesons: P = n*, 7% n-, 7,7, K+, K-, K°, K°.
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The creation operator of the outgoing state with four-momentum p (three-momentum p)-
and SU(3) index P is af(p, P) satisfying the commutation relation

La(p, P), a*(p', P)] = 2poNO*(p—p')ope- 2.H

Here N is an arbitrary normalization factor (say N = (2n)3) and p, = \/ mZ+ p? where
mp is the mass of the P meson. The resolution of the identity in the Fock-space of outgoing
particles is

= 1 dapl d3P
I = _— LI ¢ nPn e gt PHI0 0 P.) ... P,
Z n! Z J‘ZPION 2pn0N 4 (p ) a (pl l)i > < Ia(pl 1) a(pn ll)
=0 Py...P,

2.2)

The transition amplitude 7; from the decaying state |I> (with four-momentum p)
to the final states given by the S-matrix is defined as

0la(psPy) -+ a(p PS> = —i2n)*8* (p—p1— -+ —P)THPiPy, =, paPn).  (2.3)

The SU(3) quantum numbers of a meson in the final state are expressed by the matrix
M(P) generated by

[ )

:/% [x(n®) +cos @x(n)+sin gx(1')], x(zH), x(K*)

M = Lx®MP) = | x(x7) :/13 [—x(n°)+cos gx(n)+sin ¢x(1)], %(K°) @24y

(X(KT) x(K®) cos px(n)—sin px(n) J

Here ¢ is the octet-singlet mixing angle measured from the “ideal” mixing. If the SU(3)-
-properties of the initial state |I) are specified by the matrix M; = M| then the transition
amplitude 7, in the constant matrix element quark model is [14]:

B3 — _ —
nl Z Tr {MIM(Pn(l))M(Pn(Z)) M(Pn(n))}' (2.5)

n(1)n

TI(p1P19 Tt pnPn) = cn\/

—— T

Here ) denotes a summation over the permutations n(1), n(2), ..., n(n) of the numbers
n(l)n
1, 2,...,n; B is a parameter of dimension mass~? and ¢, is the constant, dimensionless

amplitude of the n-meson final state. In a quark model like in Ref. [16] ¢, has to be un-
derstood as an average (in modulus) of the amplitude over the momentum space. As it
was pointed out in Ref. [14] the important point is that the SU(3) coupling scheme in
Eq. (2.5) is common to a large class of diagrams in the quark model and by virtue of the
OZI-rule this class is dominating.
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As is shown in the Appendix, the branching ratio of a channel with a number n(P)
of P-type hadrons (i. e. occupation number of SU(3)-states n(-) = {n(P)} and total
particle number n = Y n(P)) is

P

T1 #(P)!
P

G1[n(-)11*eln(*); p; B] (2.6)

multiplied by an overall normalization factor. Here the factor G,[n()] is determined by
the generating function

oo

Gr=Y ¢,Tr {M;M"} = ";) Gi[n()] {[;[ x(P)"®}, @7

n=2

and g is the relativistic phase space integral corresponding to the occupation number n(-):

_ Bd3p{P iP)} . . _
P,i(P)

The numerical calculation of the trace factor Tr {M;M"} can be done directly on a com-
puter but we found it more convenient to use an explicit form following from

Tr {M,(1-M)"'} = 20 Tr {M;M"}. (2.9)

Abbreviating now x(P) by P we have

1—-n, —-=n* -K*
-M=|-n" 1-n, —-K° |. (2.10)
-K~ -KX° 1-m,

The states 1,4, are the diagonal elements in the matrix M, that is:

n° cos ¢ ,sing
Ny = + a0
NG V2
3 1t°+ cos<p+,sin(p

1, = —1 sin ¢+% cos @. 2.11)
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From Eq. (2.10) it follows that

(1-M)"' = [det(1-M)]""

1-ng—n,+nm,—KK® 2" -2+ K*K° ' K°+K* -K*ny
x|n”—nn+KK° 1-n,-n,4nn.~K*K~ n7K*+K°-K%, . (2.12)
R‘KO’*_K—_'K_nd “+K-+KO“KOTI\; l—nu~nd+nund*n+n_

The determinant is given by
det(1—=M) = (1—,) (1-1y) (1-1)—n*K°K~ —n"K°K*
~(l=n)r* 1™ ~(1-n)K* K~ —(1-n,K°K". (2.13)

By the repeated use of the identity

o

—y- L+ D!
1-L __ N
1-x) —zx T (2.19)
=0
one can easily show that
[det(1-FD]" = 3 mienynli(e’ KPK (e KoK (KK (KK

ns (M1t Ny tnstns+ns)(ny+ny+n3+ns+ne)!
nylnytngtnglnslng(ny +n,+ny+ns)!

x(n*n")

y (ny+n+ng+ns+n)l(ng+ny+n3+ng+ng)!
nq (ny+ny+ng+ng)ng(ny+ny+ny+n,)!

(2.15)

The powers of the mixed states 1,4, can be calculated from the multinomial series
like e. g.

z : k! 1\
k ki, ka. .tk k2 : k3
M = Mo o e cos? @ sin™ @, 2.16
v ° k,'kz'k3 (\/2) ( )

ki+ka+ki=k

The number multiplying ¢, at a given occupation number n(-) of the SU(3) states can be
read off from Eqs. (2.15-2.16) as the coefficient of || PP, It is easy to write a computer
P

program for this and to use the result in Eq. (2.6). The multibody phase space integrals
in Eq. (2.8) can be calculated either by a Monte-Carlo method or (as we did) by the statis-
tical method [17].

Before proceeding to the case of several SU(3)-muitiplets let us mention the distribu-
tion (2.6) is not of a simple multinomial type for the different charge branching ratios.
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In fact, the closer inspection of the factor G, reveals that, for a single SU(3)-multiplet,
(2.6) is rather far from being muitinomial as e. g. the distribution is essentially independent
from the number of neutral pions. This, however, refers only to the case of a single (say
pseudoscalar) multiplet, whereas in multiparticle final states resonance multiplets also
play an important role. This alters the distribution over charge configurations in a non-
-trivial way (presumably making it more similar to the “statistical” multinomial distribu-
tion).

The case of several (a number k) different spinless SU (3) nonets can be treated similarly.
Let us denote the SU(3)-matrix of the i'® nonet by M(i, P) (P stands for the different
states within a nonet, the dependence of M(i, P) on i is due to the mixing angle ¢; which
may be different for the different nonets). The number of P-type particles in the i™ nonet
will be denoted by n(i, P), hence there are altogether 3 # (i, P) = n(i) particles in the i

P

nonet. The simplest generalization of Eq. (2.5) for the case of more nonets is to assume
that ¢, is replaced by a constant depending on the occupation numbers #(-) only: ¢{n(-)].
The transition amplitude is in this case

Bn—3
T,[iPy, iyPs, -+, i,P,] = C["()]\/ ot
X Z Tr {MIM(in(l), Pn(l))M(in(Z)’ Przy) M(in(n)’ Pn(n))}' 2.17)

n{Hn

In order to reduce the number of parameters we shall assume that there is a common

n-particle amplitude ¢, for all the nonets (n = Y, n(i) = 3 n(i, P)) and the dependence on
i i,P

the numbers n(i) is simply given by a weight factor £(i) to the power n(i), that is

c[n(-)] = c, I:]l &, (2.18)

In this case the branching ratio of a channel with occupation numbers n(--) = {n(i, P)}
is (apart from an overall normalization factor) proportional to

[T (i, P!
= 1Gy[n(-)]1Peln(- -); p; BI. (2.19)

n!

The generating function of the factors G[n(--)] is now

o

G = 3 & Tr (Mi[E, é0x(, MG PT) = 3 Giln(- ]I xG PR, (2.20)
The phase space factor g is, of course, defined in full analogy with Eq. (2.8). The calcula-
tion of G [n(--)] is facilitated by an expression like in Eq. (2.15) where, in our case of
{i} = {pseudoscalar, vector, tensor} nonets, for instance, n* is replaced by n*+xg*+yA;,
and in general P is replaced by P+xV+yT if V = {o*, % ..., K*°} stands for vector
mesons and T = {A;, AY, ..., K**%) for the tensor ones.



29

3. Comparison with experiment

The mesonic decays of some charmonium states below the charm threshold, namely
of the Jjy, x(3.415), 1(3.505), (3.550), X(2.830) states and the mesonic final states in the
e*e~ annihilation at /s = 3.095 GeV c. m. energy (off the resonance) are studied in this
section. The electromagnetic and the OZI-rule violating strong decays into mesons take
a prominent part in the hadronic decays of the J/y. The M; matrix characterizing the
SU(3) structure of the decaying state was chosen in the OZI-rule violating strong (Mgy)
and in the electromagnetic (Mgy) decay as follows:

r. w
sm_q) 0 0
V2
Mg = i .
ST 0 Sm_‘P 0 » 3.1
V2
LO 0 cos ¢
Z 0 0
Mgy =10 —% 0] (3.2)
0o o0 -1

The mixing angle ¢ introduced in Eq. (3.1) is specifying whether the J/yp is really an SU(3)
singlet state. The special choice of Mgy, in Eq. (3.2) reflects that the second order electro-
magnetic decay amplitude of a cc bound state into SU(3) quarks is proportional to the
charge of the corresponding SU(3) quark. If we assume that there is no interference between
the two processes, then |Gy, [n(--)]i? included in Eq. (2.19) is the following:

Gyp [n(- )11 = 1Gsz[n(-)]1® +alGemln(- )17, (3.3)

here the parameter o takes into account the relative weight of the electromagnetic in
comparison with the strong interaction. The generating functional of the factors Ggyln(- )]
can be obtained from Eq. (2.20) by substituting EM instead of 1. The generating functional
of the factors Ggr[n(--)] takes into account the G-parity conservation in the strong inter-
action

[ve)

GH=Y ¢, Tr {2}; [&G)x(, PYM(i, P)T"} + ic,, Tr {; [e()x(, GPYM(i, )T},  (3.4)

n=0

here C; is the C-parity of the i-th multiplet and C; = C, exp (inl,) (I, is the second
component of the isospin operator).

Let us denote the expression in Eq. (2.19) by v,[n(- -)] (where I = EM or ST). In this
case the following expression can be obtained for the branching ratio of a resonance
state |n(--))> arising in the first step of the decay

wln(-)] = Hostln(- )] +owemln(- )1} (3.5

A is the normalization factor. The sum of the branching ratios of electromagnetic processes
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giving meson resonances in the final state is

Agm = A Z)UEM[n(' 1} (3.6)

n -

and the same quantity for the OZI-rule violating strong processes is:
Ast = A (Z) vsr[n(- )] 3.7)

The equations analogous with Eqs. (3.5)-(3.7) characterizing the decay of y(and
X(2.830)) particles and the final states containing only meson resonances in the ete-
annihilation in the off resonance case can be obtained similarly. In the former case we
have to take into account that the G-parity of the 3 and X particles is even and there is
no second order electromagnetic decay, and in the latter case, that the mesonic final
states arise only via electromagnetic interaction.

The experimentally detected final states originate from the decay of resonance states.
In our calculations the decay rates of the individual resonances were taken from the Rosen-
feld Table (the interference among the resonances was neglected). Our model can be
characterized by the parameters B, x, y, @, &, 4, g, = |c,1* (n > 2), which in general may
have different values in the different processes. When sufficient experimentally known
data for the branching ratios is available we can determine these parameters with high
precision. The parameter values (or some of them) obtained in this way can be used to
predict branching ratios in other experimentally still unknown (or less well known)
decays.

Studying the decay of J/y g, = 1 was assumed for n > 7 as the states with n > 7
do not contribute appreciably to the observed channels. The branching ratios of the final
states coming from the decay of x(3.415), x(3.505) and x(3.550) were fitted together assuming
that (1) B, x, y are the same for the three processes; (2) x and y are equal to those values
obtained from the fit to the J/y decay; (3) g, =1 for n>2; (4) A,(3.4,5’ < 3 - 10~* (this
assumption was needed to satisfy the relation: 4 Y vgr[n(--)] < 1 for %(3.415)); (5) we do

n(-)

not make too large a mistake in the numerical calculation by neglecting states with the
total rest mass of the resonances larger than the mass of the J/yp. We consider assumption
(5) well motivated by the fact that in the case of J/A decay (assuming the values tabulated
in the Table I for the parameters) the sum of the branching ratios of all the resonance
channels having total rest mass larger than 2.6 GeV is equal only to 1.3%. In order to
study the e*e~ annihilation the parameters B, x, y, ¢, g, were chosen to be equal to the
ones obtained by the fit to the final states of J/y decay. In this case, of course, only the
electromagnetic interaction is present. The best value for a4 in Eq. (3.6) can be determined
from the following experimental data taken from Ref. [1]:

o[Iw - n(-))/o[Ijw - p*p7]
ofe*e”™ — n(--)}jo(e*e” » pp7)
_ {0.840.3 for n(-*) = 2(x’n"),
~ 11.17+0.57 for n(-+) = 3(n"n7); at \/s = 3 GeV.

a[n(--)] =

(3.8)
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Here we have used that the branching ratio of the process Jjy — pru~ is equal to 0.069
and the branching ratio of the process ete~ — p*p-~ is equal to 0.226 at /5 = 3 GeV
c. m. energy [1]. In the fitting procedure we did not take into account the possibility
that the (w*n~) pairs may come from the decay of K,s. The subsequent control showed
that this does not influence the agreement with experimental data in an essential way.
Upper limits were not taken into account in the fit.

The results of the fit under the above assumptions for the different processes are
collected in Table I. Assuming the values of Table I for the parameters we compared
in Table II the predictions of the model with experimental data on the branching ratios of
all purely mesonic channels. The predicted and the experimentally determined values
for the quantities in Eq. (3.8) are also tabulated here.

TABLE I
Parameter values in different processes
J— = !

Gev-3) | ¥ ¥ ? @ A
Iy 321 0 036 1.33 71.0 0.99 0.750 - 104
ete~ 3.21 0.36 1.33 71.0 - 0.27 - 1073 (= Ax)
%(3.415) 1.43 0.36 1.33 38.3 0 0.0003
%(3.505) 1.43 036 © 1.33 56.8 0 091 - 104
x(3.5§0) 1.43 036 | 133 397.3 0 i AO.ZZ <103

&2 &3 &a gs 8o gn n>17

I/, ere 5.14 0.51 0.58 0.089 0.49 1
e 1 1 1 1 1

From Tables I and Il we can infere the following:

1. In the decay of J/y the “characteristic hadron size” is \/B = 0.35 fermi. This value
is equal to about 1.5 times the corresponding value in the decay of the y particles:
VB = 0.24 fermi.

2. In the J/y decay the tensor mesons are produced with relatively large amplitude,

3. The x(3.505) particle can be considered as mostly SU(3) singlet state. In J/y the
(uu) and the (dd) states, in the decay of x(3.415) and y(3.550) the (ss) state are dominant.

4. The agreement with experimental data is generally rather good. An exception
is the decay rate of the J/y — ¢ntn— channel: the ratio of the experimental to the model
predicted value is about 20. In the model this channel is suppressed by the OZI-rule,
We refer in this respect to the experimental paper of Vanucci et al. [18]. According to it
the very different behaviour of the invariant mass spectrum of the n+n— pairs below and
above the KK threshold makes likely that the mechanism producing this final state is
incompatible with the basic assumptions of our model. In Table II the measured upper
limits are also included. These limits are generally compatible with the branching ratios
computed from the model. The exception is K,Kj.



TABLE ITA

Branching ratios for y decays and the value of a[n(- )] defined in Eq. (3.8). The numbers in the second and

third columns show the contribution of the strong and of the second order electromagnetic processes,

respectively, to the theoretical value wy,. The numbers in brackets refer to the case of taking into account
also pions from Kgo decay

A-vst/wn | Advem/wim Win Wexp

Final state (%) (%) (%) (%) Ref.

Decay of x(3.415)

Tt 100 0 0.15 1 +03 21

K+K- 100 0 0.28 1.4 +0.3 21

2mt) 100 0 3.53 4.6 +0.9 2]
(3.56)

KK~ 100 0 275 3.7 +09 2]

3(rrne) 100 0 3.03 1.9 +0.7 2]
(3.35)

Decay of x(3.505)

2Amtm) 100 0 2.17 2 406 2]

KK~ 100 0 1.1 11404 2]

3t 100 0 2.13 2.7+1.1 21
(2.26)

Decay of x(3.550)

e+ KAK- 100 0 0.27 0.27+0.11 2]
2(wtr) 100 0 1.95 2.4+0.6 2]
(1.98)
mtre-KtK- 100 0 2.11 2.1+0.6 21
3(mtr) 100 0 2.06 1.3+£0.8 2}
(2.30)
ete™ 4/5 = 3.095 GeV
2(n*n) 0 100 0.98 1.03+0.4 [1]
(1.08)
3(mtm) 0 100 1.12 1.2840.5 [
1.22)
an(- )}
model experiment Ref.
ot 26.7 (25.9) >3.5 [1]
2rtr) 0.95 (0.91) 0.8+0.3 [11
0 2(mtnT) 355 (30.5) >54 ]
3(wtr) 0.95 (1.02) 1.17+£0.57 n

70 3(mtn) 23.5 @L.1) ~4.6 11
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TABLE I1B
The same as Table 1IA for J/¢ decays
Final state Avst/win Accvpm/win Win Wexp Ref.
(%) (%) (%) (%)
|
Far 0 100 0.034 0.0164+0.016 [18]
ot 96.6 34 0.85 1.3+03 {18]
2(wtr-) 3.6 96.4 0.29 0.4+0.1 [18])
(3.5 (96.5) (0.30)
0 2(nt) 97.4 2.6 5.20 4+ 1 {18]
(97.2) 2.9) (5.23)
I(=tn) 3.6 96.4 0.33 04+0.2 [18]
(14.0) (86) (0.38)
70 3(nrt ) 96.1 39 3.10 294+0.7 [18])
(95.8) “4.2) (3.20)
n®4(rmtn) 93.7 6.3 0.90 0.9+0.3 {18}
93.5) (6.5) (0.91)
e 98.5 1.5 0.83 1+£0.2 {4]
oA, 98.5 1.5 1.15 0.84+0.45 [18]
Aln- 0 100 0.05 <0.43 it
wntn 98.5 1.5 0.81 0.78+0.16 [4}
w2(mte) 98.3 1.7 0.92 0.85+0.34 [18]
K+K- 0 100 0.033 0.02+0.016 [18]
K%K°® [\] 100 0.13 <0.018 {18]
KOKOo** 0 100 0.37 <0.2 [18]
K°%K-nt+ec. c. 65.3 34.7 0.59 0.52+0.14 [18]
KK~ 69.6 304 0.50 0.72+0.23 {18}
mOrtK+K- 84.8 15.2 0.91 1.2+0.3 [18]
2AK+*K) 53.1 46.9 0.081 0.07+0.03 [18})
2(nn) KK~ 63.5 36.5 1.10 0.31+0.13 [18]
(62.8) (37.2) 0.12)
K*+K*-+c. ¢, 97.3 2.7 0.30 0.32+0.06 [18]
K%K* 4 c.c. 90 10 0.32 0.27+0.06 {18}
K+K**+ c.c. 0 100 0.092 <0.15 [18]
K*0K*0 0 100 0.0019 < 0.5 1]
KHOR*#0 90 10 0.42 0.67+0.26 [18])
K#*#0K #%0 0 100 0.17 <0.29 [18]
[ 86.9 13.1 0.0073 0.14+0.06 [18]
wK+K~ 85.1 14.9 0.063 0.08+0.05 [18]
KK~ 90.5 9.5 0.10 0.09+0.04 [18]
& 70.2 29.8 0.027 0.1+0.06 [18]
on’ 85.4 14.6 0.044 0.054+0.04 {11
of 99.7 0.3 0.0051 <<0.037 [18]
o’ 79.0 21 0.086 0.08+0.05 [18]
of 98.4 1.6 0.38 0.40+0.14 4]
of’ 98.7 1.3 0.0043 <0016 {18}
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TABLE 111

Branching ratios after the resonance decay which are above 19 in X(2830) mesonic decays. The numbers
are normalized to the sum of purely mesonic channels. The parameter values are given in Table I, the
ones for X(2830) are taken to be equal to those of the J/§

erem Wy 1 X830 | x@. 415) %(3.505) ¥(3.550)

% % | % ] % %

4n° 1.3 0.25 29 ‘ 12 1.4 0.85

6x° 1.8 0.34 1.7 0.54 0.71 0.48

- 0.42 0.08 1.7 0.15 0.16 0.093
(KK Kpor | 1.2 0.69 1.9 1.9 1.2 1.7
Tt OO 3.1 0.60 8.3 2.7 3.1 1.9
Yy 0.40 0.079 1.2 0.50 0.56 0.33
K+K-=%:0 1.3 0.42 1.1 1.2 0.93 1.2
nrnOnOn® 1.9 6.4 1.4 C 063 0.66 0.44
rn-dno 3.8 L5 3.8 24 3.0 2.1
rrT2(n%) 1.05 0.29 1.4 1.6 1.9 1.2
50 1.9 2.7 1.3 1.7 2.1 1.4
2Artr-) 3.5 0.71 9.8 3.7 43 2.6
(K- +nK?Y) | 0.85 047 | 13 1.3 0.83 1.2
KK 1.9 1.2 ! 2.5 29 2.2 2.8
A=) 4.5 1.6 ! 7.1 44 5.6 3.8
Artny) 081 | 018 : L5 20 2.5 1.6
2mtn-)3n° 2.5 59 : 2.1 2.7 3.3 2.2
2Amtn-)4n® 2.0 2.7 i 12 0.81 1.1 0.78
3(m+n-) 3.97 0.89 6.8 3.5 4.5 3.1
3(rr+m) 250 1.5 1.6 1 1.3 1.0 1.4 1.0
3(rt o) 3n° 2 g 10 | o088 1.2 0.87

TABLE IV

Average multiplicities of the first generation (*‘direct”) resonances in the mesonic decays of the J/¢ and
in the mesonic final states of the e*e~ annihilation at 4/s = 3.095 GeV off the resonance

n° nt K+ K®° 7 7
[

I 091 0.78 0.08 0.08 0.26 0.068
efe~ 1.25 0.70 0.092 0.11 0.41 0.10

e° o+ K*+ K*° ® é
I Q.15 0.14 0.032 0.032 0.26 0.014
ete~ 0.025 0.013 0.0041 0.0071 0.031 0.011

AS A ; K%+ K**° £ £
I/ 0.041 0.032 0.011 0.017 0.065 0.015
ete~ 0.084 0.039 0.017 0.049 0.085 0.069
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5. The known branching ratios in the decay of %(3.505) and %(3.550) are well repro-
duced by the model. Some discrepancy can be found in the case of %(3.415) but the
differences between the model predicted and the experimentally measured values are also

TABLE V

Average multiplicity as the function of the number of charged particles n., and the total average multiplicity
in the mesonic final states after the decay of resonances. wey is the sum of the probabilities of all channels
containing charged particles of number ngp

N wen(%) A onen Tnen | T | Ka | KoLdne
. Iy 3.2 0.80 4.40 0 0 0.45
ete 12.8 076 | 455 0 0 0.35
5 Iy 29.3 0.42 2.98 0.87 0.13 0.24
eve- 35.2 0.55 2.75 0.79 0.21 0.27
, A/ 43.5 0.29 1.82 1.81 0.19 0.11
ete” 33.3 0.39 1.65 1.75 0.25 0.11
o ] Iy 18.8 0.24 1.42 2.90 | 0.10 —0.03
ete- 133 0.34 106 | 290 010 | o003
. Iy 3.6 0.09 1.14 3.96 0.04 ' 0.004
eve” 24 0.19 0.69 3.97 0.03 0.001
Iy 0.05 012 . 123 5.00 0 0
10 — .
ete- 0.06 0.16 0.83 5.00 0 0
% <n®> (> <K+ <KoL>
Total av. multipl. I 0.32 2.12 1.73 0.14 m'o.m
eve 0.47 2.26 1.35 0.17 0.18

smaller than twice the experimental error with the exception of the x(3.415) —» ntn-
and K+K- channels.

In Table III the channels arising from the decay of X(2.830), x(3.415), 1(3.505), x(3.550)
and J/y (e*e~) having the largest branching ratios in X(2.830) are collected. Tables IV
and V contain the average multiplicities of the direct pseudoscalar, vector and tensor
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TABLE VI

Comparison of the predicted values of the charged average multiplicity <n.,> the relative weights of the

2, 4, 6, 8 prong events (assuming wz+wa-+we-+-ws = 100%) and the average multiplicity of photons

at fixed prong number {y),,, 4+2<{n%)y,, in the mesonic decays of J/{ with the experimentally measured
data taken from Ref. [19]

wen( %) <Y>nch+2<xo>nn
Nen
model exp. model exp.
B |
2 30.8 3245 6.4 7.2+1.8
4 45.7 4948 3.9 6.2+£14
6 19.7 1843 31 ! 4.6+1.2
8 3.8 1+0.6 4.6 ; 62+1.6
{nep> 374 3.8+03

mesons apd average multiplicities of the particles n°, n+, K*, K, v arising from the decay
of resonances, respectively. Here only the J/y decay and the ete~ annihilation are included.
In Table VI we compared with experiment the predicted charged average multiplicity,
the relative weight of 2, 4, 6 and 8 prong events and the average multiplicity of the photons
at fixed number of charged tracks in the mesonic final states of J/y decay. The data were

TABLE VII

Total branching ratios of classes of final states. The data are taken from Ref. [1] and [20]

Final state | ete”, pwip- vy
Purely mesonic % % % Left over
. I o
Initial state ] {model) (experiment)
I 34.4 (strong) I 14 —_ 43.3
a27= {“L 8.3 (elect.)

ete” 29.4 44.6 — 26.0
%(3.415) i 96.1 — 3 0.9
%(3.505) 50.8 — 35 14.2
%(3.550) 75.6 — 14 10.4

taken from Ref. [19]. We should like to note, however, that these quantities were measured
in Ref. [19] assuming that the non-pionic final states can be neglected.

We can compute in our model (using Eq. (3.6), (3.7) and taking the parameter values
from Table I} the sum of the branching ratios of all the channels containing only meson
resonances. In such a way we can also predict the sum of the branching ratios of all the

remaining channels (e. g. baryonic or radiative channels). These results are collected in
Table VIL
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4. Conclusions

In the previous Section the presently available data on J/w(3095) mesonic decays
were fitted by the parameters B (effective cross-section or volume), x and y (weight factors
of vector and tensor meson resonances, respectively), ¢ (octet-singlet mixing angle in the
Zweig-rule violating strong decay), 4 (proportional to the total branching ratio of purely
mesonic channels) and g, g3, ..., g6 (dimensionless n-body amplitudes squared). The
results and predictions of the fit are contained in Tables I-VII. The obtained value of
B = 3.21 GeV-? is more than an order of magnitude larger than the current algebra
inspired guess of Ref. [6]: (2r)~3f,”? = 0.23 GeV-2. (This implies in general larger multi-
plicities.) As a cross-section B = 1.25 mb is, in fact, rather reasonably hadronic (and
psionic). (So is the corresponding length B = 0.35 fm.) It is about the same as the value
(2.32 GeV-?) of the corresponding parameter in Ref. [I11]. In summary, such a value can
be expected from the beginning for heavy particle decays, and it can be taken (at least
roughly) universal.

The parameters x = 0.36 and y = 1.33 give the relative weights of vector and tensor
mesons, respectively (in dimensionless amplitudes) compared to pseudoscalar mesons.
On purely statistical grounds one would have x = /3 and y = /5 corresponding to the
number of different spin states, hence the values obtained are lower than expected. The
channels with n = 2, 3, 6 resonances make up about 159 each, n = 4 gives more, namely
409, (the rest is for n = 5 and n > 7). The average mulitiplicity of the *“‘direct” mesons
is 4.19. Out of this 749, 209, and 6 9/ are pseudoscalar, vector and tensor meson, respec-
tively. For instance, the “direct” pions ({n,+) = 0.78) are more copious than the “direct”
@-mesons ({1,) = 0.15). The relative number of vector mesons is therefore considerably
less than in hadronic collisions [15]. The contribution of tensor mesons is not large. In
fact we also tried a fit to J/y decays without tensor mesons (y = 0). The resulfs turned
out almost as good as those in Table IIB (of course, except the channels containing
explicitly tensor mesons) and the values of the other parameters are essentially unchanged.
No acceptable fit can be obtained however with the pseudoscalar mesons only (x = y = 0).
Concerning other resonance multiplets (axialvector, scalar, etc.) the stability of the fit at
the omission of tensor mesons suggests that they are even less important in influencing the
branching ratios observed up to now. Such higher multiplets are, in principle, possible to
include at a later stage if there will be some experimental data on them.

The value of octet-singlet mixing angle ¢ = 71° means that the J/y(3095) is, in fact, far
enough from being pure SU(3)-singlet (corresponding to ¢ = 54.7°): there are less strange
quarks in it than in an SU(3) singlet. This gives a suppression for K-mesonic channels.
Apart from this there is still another stronger suppression due to the larger kaon mass.
The final result is, for instance, the large difference in {n,+> = 1.73 and {(ng.) = 0.17.
We want to emphasize, however, that no other SU(3)-breaking factor is needed for the
suppression of the production of strange quarks as it is usually believed in naive quark
models. Our amplitude is exactly SU(3)-symmetric, the SU(3)-breaking is due to the mass
differences only. Another interesting SU(3)-feature in the J/y(3095) mesonic final states
is the relative abundance of n and & mesons: {n,> = 0.26, {(n,> = 0.26. Comparing to
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the number of kaons or @° mesons, respectively {nearby in masses) we can see that the
initial SU(3) quantum numbers of the hadronic state manifest themselves rather strongly
in the multimesonic final state. This is one of the interesting questions which can be studied
in multiparticle final states of heavy particle decays [14].

An interesting feature of our fit is that the sum of all purely mesonic channels for
J/w(3095) is only 439,. Adding another 14% for lepton pair decays we are left with
439 for other channels. This seems to be at the first sight surprisingly large. Among the
candidates for the left out channels there are the ones with at least one pair of baryons
or at least one photon. This is, after all, an experimental question (and we not know any
data which would contradict such a number) therefore we do not wish to comment very
much on this point. We only note that in large transverse momentum multiparticle final
states there are measurements [21] indicating a quite large (20-309;) “direct” ¥ produc-
tion compared to pion production and in e*e~ annihilation at /s = 3.8 GeV the mea-
sured inclusive antinucleon cross-section (o =~ 20;) is about 109, of the total hadro-
nic annihilation cross-section [l, 22]. The direct ¥ production can also contribute (be-
sides the n mesons) to the so called “energy crises” (more neutral than half of the char-
ged energy in the final state) observed in e*e~ annihilation. From this point of view
the numbers for {n,0> and {n..)> in Table V are quite remarkable showing the predomi-
nance of neutral particles, especially in the ete~ case. (This is another place where the
initial SU(3) quantum numbers seem to play an unexpectedly large role.)

Besides the application of the constant matrix element quark model to other charm-
onium states (3’s and X, as we did, and possibly others) there is also the possibility to
apply it to other processes like, for instance: the opening up of the mult’particle channels
above charm-threshold in ete~ annihilation (e. g. DDrKKn in competition with DD) or,
perhaps, also to the decay of heavier quarkonium states. It seems possible to extend the
model to calculate baryonic and radiative channels as well.

It is a pleasure for us to thank our colleagues and especially Drs. G. Jancsé and G.
Vesztergombi for valuable comments concerning this paper.

APPENDIX

Hilbert-space element, density operator, branching ratios

The Hilbert-space element in the space of outgoing particles corresponding to the
initial state {I) is S|I). Using the resolution of identity in Eq. (2.2) and the definition of
the transition amplitude Eq. (2.3) we have:

‘ 1 d’p, - d’p,
Siy = —i@m* Y — " % (p—py— =P
n! 2p1oN - 2poN
n=2 Py ...Py

x Ty(p1Pys -+, pP)a%(p,P,) -+ a¥(p,Py) [0). (A1)
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In the constant matrix element quark model the transition amplitude is given by Eq.
(2.5) therefore, as it was given in Ref. [13]:

SI> = — i@y E \/B" J Eor &b o i =
2pioN - 2PnoN

x Tr {M;4%(p,) --- A*(py)} 10D, (A2)
where the creation operator matrix 4%(p) is defined by
A¥(p) = Y, M(P)a*(p, P). (A3)
P

The Hilbert-space element in Eq. (A2) is equivalent to the following density operator
(with M} = M)):

Ri(p, p') = SIHKI'IST. (A4)

Here, for later convenience, the four momentum of the state is taken to be different (p and p’)
on the two sides of the vacuum. The measurable quantity is, of course:

Ri(p, p) = SII) I|IS™. (AS5)

The distribution of the particles in the final state can be calculated with the help
of the operator functional I{®(--)] depending on the functions {&(p, P)} = &(--):

_ ¢13p1 - dip,

x at(p,Py) - a*(mP;) 10> (Oa(p,Py) -+ a(p,P,). (AS6)

The generating functional of the exclusive and inclusive distributions is

KIISHLP(- )]SI

Vilp; #(-)] = iStSIT

(A7)

The exclusive distributions can be obtained from here by taking functional derivatives
at @ = 0 whereas the inclusive ones by taking functional derivatives at ¢ = 1. In particular,
the generating function of the multiplicity distribution is obtained if the functions @(p, P)
are replaced by constants (p.

Due to the use of plane wave states the matrix elements on the right hand side of
Eq. (A7) contain a factor 6%(0) which is usually identified as (2n)*VT where V is the
“whole volume” and T is the “whole time interval” of the transition. This infinite factor
has to be omitted during the calculation therefore it is convenient to introduce another
{well normalized) density operator R,(p) instead of R,(p, p’). In general, we can write

KIST[D(-)ISIT> = Tr {R(p, P )]} = 8*(p—p) Tr {R(PI[(- )]} (AB)
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This relation does not uniquely define R;(p) because in the trace only diagonal elements
enter. The non-uniqueness is, however, irrelevant for the distributions we are interested
in (the non-diagonal terms correspond to interferences among states with different particle
numbers etc.), therefore any choice satisfying Eq. (A8) is right. According to Ref. [12]
we can choose Ry/(p) as

’ i Bn 3 d3P ._‘d3pn d3p/ d3p,',
R(p; Bl = (2m)° » e’ : !
nl J2pioN =+ 2ppoN 2pioN - 2p,oN
n=2

8Tp—% X (put pD] Tr (M;A'(py) -+ A1)} 05 <O Tr {MAGP}) - AR} (A9)

Combining Egs. (A7), (A8) the generating functional of the final state distributions be-

comes:

Tr {R,[p; BYI[®(- )]}
Tr {R/[p; B]}

In order to explicitly calculate the branching ratios into different final state channels

it is useful to introduce the states with fixed occupation numbers in SU(3)-states {n(P)}
= n(-). The resolution of the identity in Eq. (2.2) is in such a notation:

o Z [H "(P)’] f H H 2‘;{11}’{111()1}2}

x T a%p{P, i(P)}, P)|0> <O} [] a(p{P, i(P)}, P). (Al1)

P,i(P) P,i(P)

il @(-)] = (A10)

If the state {P,P,...P,} corresponds to the occupation numbers »(-) then let us denote
the transition amplitude in Eq. (2.5) by

T,[n()] = n(P)! (A12)

For a function F depending only on the occupation numbers #(-) we generally have

XISV IR
n'
Z Z x(Py) -+ x(P,) ZTY {M{M(P1y) - M(Pyiry})

a(n

therefore

ac

= Z) [IFPI *(PYP1G[n()] = ¥ ¢, Tr {MI(ZP: x(PYM(P))'}. (A14)
n(-
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This is the generating function of the factors G;[n(*)] in Eq. (A12) also given in Eq. (2.7).
From Egs. (A11)~(A12) in the constant matrix element quark model it follows:

d*p{P, i(P)}
Siy = —i2n)* Z J G[n(")] I H 2P{P i(P)}oN

n(-) P,i(P)

xd%p— 3. p{P,i(P)}) PI_(IP) a'(p{P, i(P)}, P) |0). (A15)

P,i(P)

Using this expression together with Eq. (A10) or (A7) the generating functional ¥, can
be obtained in the following form:

Pl
1Gi[n(-)]1%e[n(-); p; BO(-*)]
Vilp; @(-)] = 2 . (A16)

[1n®)!
Z IGi[n(-)]1*e[n(*); p; B]

n(-)

Here o[n(); p; B®(--)] is the same as the phase space integral defined in Eq. (2.8) only B
in it is replaced by BP(p{P, i(P)}, P). The expression in Eq. (2.6) for the branching ratio
into the final state with occupation numbers n(-) is an immediate consequence of Eq.
(A 16).
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