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The conditions of isotropy of pressure in a perfect fluid undergoing irrotationa
shearfree motion lead to differential equations, which may be used to obtain exact solutions
for inhomogeneous distributions.

1. Introduction

The purpose of the present paper is to explore the possibilities of exact solutions
corresponding to perfect fluid in general relativity under certain restrictions such as
w; = 0, =0, but ® # 0 where w,, 0,, and ® stand for vorticity vector, shear tensor,
and expansion scalar respectively of the fluid motion (Ehlers 1961). The line element is
then of the form

ds® = e’dt* —ehdx'dx’  (i,j=1,2,3), (1)

where h; ; = 0. Here dot represents differentiation with respect to time and v, u are functions
of space as well as time co-ordinates. If the motion is also geodetic, we get the isotropic
homogeneous cosmological solution.

We consider here that the motion is nongeodetic (V% ,V® # 0, V“ being the four
velocity) due to the existence of pressure-gradient forces and further /;; is simply the
3-flat space. There are a few such inhomogeneous cosmological solutions in the literature
(Shepley and Taub 1967, Thompson and Whitrow 1967, Faulkes 1969, Banerjee and
Banerji 1976) with high symmetry. We do not make any a priori assumption regarding
the symmetry and differential equations are obtained from the conditions of isotropy of
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the fluid pressure, which might be considered as a generalisation of the equation obtained
by Faulkes for spheres of perfect fluid.

These equations may be used to obtain exact solutions, some of which are new.

2. Field equations and the condition of isotropy of the fluid pressure
We start with the line element (1)
ds? = e°dt* —e*h;;dx'dx’,
with 4;; = (=1, —1, —1). The energy momentum tensor for a perfect fluid in co-moving
reference frame
Tll - T22 = T33 = =D, T44 =0 (2)
Tij :Ti4:0 l¢]i (3)

where p is the fluid pressure and g is the matter density. Now if G°, represents Einstein
tensor, we obtain from field equations

Glz = Gzz = G339 (4)
G'y =0, &)
G;=0 i#j (6)

From (5) 2u;,, = u,v; and so we can write
u, = C(t)e"’?, @)

C(2) being an arbitrary function of time. The subscripts indicate differentiation with respect
to corresponding coordinates. Now, from (4) and (6)

E = 2uz+v))+(v; > —u, > =2up) for i =1,2,3 (8)
and
0 = 2(u;;+0;) + (v, —uu j—up;— uv;). 9
Equations (8) and (9) may be written, in view of (7) in the form
(U11/U%se = (U2 UDss = (Uss/UPna (10)
and
(U;/U*) 4 =0 for i # j, (i1)
where U = e~ %2, Equations (10) and (11), in turn, may be expressed as
U,,—Us3s = AU?, Us3—U,y = BU?* Uy ~U,, = CU? (12)
and
U,y = DU, U, = EU* Uy, = FU?, (13)

where A4, B, C, D, E, F are functions of space coordinates and A+B+C = 0.



3. Solutions

Relations, such as U ; = F(x, y, z) U, where F;’s are any three functions of space
variables, are clearly inconsistent with (13). In view of this restriction, we may show that
the vanishing of any one of the functions D, E, F automatically implies vanishing of the
others along with 4, B, C. We may, therefore, obtain two classes of solutions according as

Case 1: D =E=F = 0. It follows that A = B = C = 0; we immediately obtain
Ujy=Uz;;=Us; and Uy;=0 (i#)),
and the solution is given by
U = a(t)(x*+y*+22)+ b, (8)x + b, (t)y + bs(t)z+ ¢, (t). 14

The matter density in this case is a function of time alone which means the matter density
is uniform although pressure p is a function of space as well as time co-ordinate. In this
sense the matter distribution is inhomogeneous although the motion is isotropic. The
solution (14) apparently cannot be reduced to a spherically symmetric one by co-ordinate
transformation and is thus different from that obtained by Thomson and Whitrow and
others for a sphere of uniform density where b,(z) = b,(t) = by(¢) = 0.

Case II: D, E,F # 0. Calculating Uy,3, Usqs, Up3, from (13) and equating them one
can obtain

2DU,—2EU, = (E,—D,)U, 2EU,—2FU, = (F;—E,)U. (15)
Again differentiating (12) suitably with respect to x, y, z and using (13) one further gets
24U, -2FU,+2EU; = — (A +E,—F,)U,
2FU,+2BU,—-2DU; = —(F,+B,—C3)U,
~2EU,+2DU,+2CU; = (E;—D,—C;)U. (16)

The right-hand side of the relations (15) and (16) must be zero, for otherwise
U; = Fi(x, y, 2)U which is again inconsistent with the relations (12) and (13). It follows
from equations (15) that

DU, = EU, = FU; = K(x, y, z, 1) an
and
D, =E, =F,. (18)
Equations (17) and (18) may be used to show that
Vanishing of the right-hand sides in (16), on the other hand, leads to the following relations
A1+E3""F2:0, F1+B2—D3 :0, El"'Dz"'C3=0, (20)

and

A = D(F*—E?JEF, B= E(D*-~F?|FD, C = F(E*- D?)|DE. 1)
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In view of (19) we may write
D = L(x)g(h(DX(x, , 2), E =f)MO(2)X(x,y,2), F=fxOIN@DX(x,p,2). (22)
Equation (18) may now be written as

(XD), 1[f = (XM), ,/g = (XN), 5/h. (23)

Using equations (20), (21) and (23) it may be shown that (f/L), = (g/M),= (h/N)s = 2a
(a is an arbitrary constant). It therefore follows that

D = Xfgh/Q2ax+b,), E= Xfgh/Qay+b,), F= Xfgh/Qaz+b;). 24)

Equations (17) and (24) may be used to show that

-

Udx+U,dy+U,dz =
14X 28y 342 Xfah

dq, 25)

where
q = a(x*+y*+z3)+ b, x+b,y+bsz+c, (26)

a, by, by, by, ¢ being arbitrary constants. We conclude, therefore, that U = U(q, t) or
in other words # = u(q, ) and also in view of (7) v = v(g, 7). Considering U as a function
of g and 1, the equations (12) and (13) lead to a single equation

Ug = QU7 ey

where (Q(q) = Xfgh/(q, 9, q5) and q; = q,;. This differential equation is analogous
to the corresponding equation obtained by Faulkes for a sphere of perfect fluid where
the variable g is equal to the square of the radial co-ordinate. Equation (27) can now be
solved following the technique given in a previous paper by Chakravarty et al. (1976). The
variable g in (26) can have either spherically symmetric or plane symmetric form according
as a # 0 or a= 0. In this context one may take note of a very simple homogeneous
isotropic solution which is apparently plane symmetric when we put Q(g) = 0 and
q = b x+b,y+bsz. Such a solution is

1+k
Uezewzo 15 (28)
R(®)
k being a constant. The matter density and fluid pressure are
8ng = 3(—~R*+b*)jR* and 8np = —(2RR+R*—b%)/R?, 29

where dot denotes differentiation with respect to time and 5% = k2(b,%+b,2+b,?).

The solution given above may be interpreted as plane symmetric and is found to
have maximally symmetric three dimensional subspace in the sense that it satisfies the
relation (Eisenhart 1924)

Py = A(gugji—8ugj) With A = b2,



where P,y stands for the curvature tensor for the three dimensional subspace with the
metric g;; and 4 is a constant. The solution is thus basically equivalent to open cosmological
model of Robertson-Walker with the space curvature constant equal to —b2. This may
be justified by considering the plane symmetry in this case to be the limiting situation for
spherical symmetry.
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