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The procedure of Speer’s analytic regularization is repeated for d-dimensional space-time
(d is arbitrary). It is shown that the generalized propagators (m?-p?—i0)"* (4 is an arbitrary
complex number) as well as products of such expressions can te analytically continued to
all values of A—dj2. For nonrational values of d the location of poles in the generalized
amplitudes is shifted away from the physical value 2 = 1. The magnitude of this dislocation
remains finite for the perturbation order tending to infinity.

1. Introduction

In writing this paper we are motivated by a recent idea of Symanzik concerning the
possibility of presenting certain renormalized systematic expansion for Green’s functions
of massless scalar field theory with self-interaction of the ¢* type considered in a space-
-time of dimension greater than four (specifically (pi,,e, where 0 < ¢ < 3) [1,2]. Symanzik’s
programme has also been tested on the examples of massless ¢35 .,(0 < & < 2) and massless
spinor (¥ ¥)3,,(0 < & < 3) models [3]. In our opinion it is interesting to analyse even
such obviously unphysical models like the ¢¢ or the ¢ as they exhibit the intriguing
mathematical features of nonrenormalizable interactions.

Symanzik’s idea is based on the hope that one could perhaps define the renormalized
functions in the models like these quoted above as limits of traditionally renormalized
functions of corresponding theories with an appropriate ultra-violet cutoff when the cutoff
is removed. To this end Symanzik has proposed to use the cutoff of Pais and Uhlenbeck
[4] in models which, without this cutoff, are renormalizable in a certain number of dimen-
sions — Symanzik has proposed first to renormalize them in a space-time of the dimen-
sionality which is of interest for us, i. e. in that of a dimension higher than this number.
The dimensions we are interested in cannot of course be too high as the “improved”
renormalizability (we mean the renormalizability following by power counting with the
presence of the cutoff taken into account) should still take place.
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Let us stress that for essential technical reasons on all intermediate stages of his
procedure Symanzik was forced to keep the dimension of the space-time generic (i. e. the
¢ nonrational). For example, this author does not even pass to physically interesting dimen-
sions (like ¢ = 1 for the ¢$,, model) before the removal of the cutoff whereby, within the
discussed framework, such dimensions can be only treated as special cases of & rational.
One can of course expect that the removal of the cutoff, which drives us back to the non-
renormalizable case, will be impossible unless some additional conditions are satisfied.
Symanzik has succeeded to formulate these conditions in terms of existence conditions
for a finite number of improper one-dimensional integrals. Unfortunately, the fact that
it was actually possible constitutes the only virtue of the whole method thus far, First of
all any further progress is tamed by the fact that within present techniques one does not
know how to compute the integrals which were mentioned above. Moreover, one can
also raise some doubts concerning the consistency of the whole Symanzik’s method, at
least when applied to massless models [5].

For our limited purposes it is important to stress once again that at the stage of the
perturbative renormalization both the cutoff and the ¢ of assumed nonrational values
are treated as if they are some realistic parameters which, in particular, have nothing to
do with the renormalization procedure. Let us also recall that the cutoff of the Pais-Uhlen-
beck type must be introduced together with a dimensionfull parameter and this feature
excludes any direct application of Symanzik’s method (in which simple dimensional analysis
is used throughout) to massive models. On the other hand, it is just the masslessness which
seems to lead to inconsistencies in higher orders of the Symanzik’s approach [3, 5.

In view of what has been said above it is tempting to investigate at the beginning
rather massive models of nonrenormalizable interactions by first introducing two kinds
of regulators as in the Symanzik method, but to choose both of them to be dimensionless.
We hope that then it will also be possible to retain Symanzik’s idea of manipulating two
regulators, i. e. to initially remove singularities of Green’s functions in one of them (by
an appropriate renormalization procedure, ¢. g. the BPHZ method) and to investigate
whether it will be possible to make the second regulator tend to its physical value. For
the first regulator we can choose the generic space-time dimension {6, 7}, exactly as in
the Symanzik’s approach. For the second one we are going to choose the parameters of
the analytic regularization [8, 9]. The idea of analytic regularization itself has been success-
fully applied to a renormalization of the S-matrix following from a renormalizable local
lagrangian field theory (the analytic renormalization) {10, 11].

In the present paper we are not dealing with any renormalization programme yet,
and we shall limit ourselves to the analysis of the dependence of Feynman amplitudes on
the number of space-time dimensions and on the parameters of the analytic regularization.
The results of this rather technical paper are based on the observation that it is very
natural to continue in the number of dimensions the Gaussian integral

d/2

[det (=R}~ P [—(i/4)xR™'x], (.1

J dp exp [i(pRp+xp)] =
Qd
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where

1+ipy
—1+in

R=400,0 = —lEi

L

Imn =0, dim Q = d and 4 is a real matrix related to the structure of Feynman graphs.
Let us note that the nontrivial dependence of the r. h.s. of (1.1) on d is hidden in the
determinant of the direct product. Namely, we have

det AQQ = (det A)*™2(det Q)*™4 = (det A)'(det Q)¥'™ 4 (1.2)
and the substitution of (1.2) into (1.1) gives
§ d’pexp [i(pRp+xp)] = n*/*(— i)~ @D 4™ A(det 4)™%/*
x (det Q)™ 72 exp [ — (i/4)x(A®Q) ' x]. (1.3)

Now it is sufficient to note that in (1.3) the “metric tensor” Q never stands alone but only
in the forms det Q@ and xQ-'x so that actually we shall never need to describe what we
mean by Q (or by lim Q) for noninteger d. On the other hand, the formula

n-0

lim det @ = (—1)7?, (1.4)
n—0
which we shall need at the end of our procedure makes perfect sense also for noninteger
values of 4. A similar argument applies to the quadratic form lim xQ-1x = x2+i0.
n-0
In Section 2 we give an explicit form of the generalized propagator (which is the
ordinary propagator to an arbitrary power) in d-dimensional configuration space. In
Section 3 we derive an expression for the generalized Feynman amplitude (which is the
product of generalized propagators over lines of a Feynman graph) in d-dimensional
momentum space. In Section 4 we apply techniques of Speer in order to investigate,
in Section 5, the structure of singularities of the generalized Feynman amplitude. In this
context we shall also mention an interesting case of the perturbation order tending to
infinity.

2. The generalized propagator

Let us begin with quoting some important properties of the generalized propagator
(for scalar field)

Apy(4, p) = —i(m*~in-pQp)~* 2.1

in the usual integral dimensional space-time. In (2.1) 4 is the parameter of the analytic
regularization (A€ %) m* >0, n >0 (real) and Q,, = g,,+ind,,, u,v=20,1,..,d—1
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(at this point we understand that d is an integer number). The Q is defined so that

limdetQ = (—1)*°1, (2.2)

n-+0
in agreement with (1.4). Note that 5 enters in (2.1) twice, in particular also in a manifestly
nonrelativistic way and until now it is not clear whether this feature really does not affect
the apparently relativistic character of various quantities which one obtains in a theory
based on (2.1) in the n — O limit. Let us recall that another nonrelativistic procedure has
been successfully (i. e. with proofs of relativistic covariance of final results) applied by
Zimmermann for an analysis of absolute covergence of Feynman amplitudes in four
dimensions [12]. In Appendix A we shall merely stress a point where the nonrelativistic
regularization as introduced above is needed and in this paper we shall not comment on
this serious problem anymore.

The property of (2.1) of far reaching consequences is the following: for integer d (2.1)
can be continued as a tempered distribution to all values of A and this continuation is
holomorfic in 4, continous in @ and continous in m?—in (m?* > 0) [10, 11]. The physical
propagator (in zero order of perturbation theory) corresponds to A = 1, # = 0 and integer
d, e. g. d = 4. Models of nonrenormalizable interactions can be realized i. €. as ¢§_, or
(obviously unphysical) ¢4_s. However, apart from the type of the interaction, it is well
known that products of such physical propagators, and such products are needed for
construction of perturbation expansions, are meaningless.

In order to investigate the multiplication in our general case it is advantageous to
transform (2.1) to (d-dimensional) configuration space:

Ap (4, x) = f d’pe* Az (2, p). (2.3)

(2n )d’
In Appendix A we show that

(= i)l ~4i2gmil2

Ap (4, x) = Jdaa“dlz'l exp {—ali(m® —in)—(1/40)ixQ " 'x},  (2.4)

2421(2) v det Q J
or, after the integration over Feynman parameter «

(__l)l 621 A \/
e (Vm
r()detQ

Ap,(4, x) = ~in)"*7*

x (V= xQ 7 XKy, [ mE =i (V —xQ 0], 2.5)

where K,(2) is the generalized Hankel function [13]. From the above mentioned continuity
of (2.1) and from (2.2) we get

1=

I(A)

Ae(h, x) = lim Ag (4, x) = m* "N X 10 UKy (m N = xP400).  (2.6)
n—-0
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In spite of the fact that derivation of (2.5) was based on the assumption that Re 4 > d/2,
the results (2.6) and (2.5) can be already viewed as analytic continuations of the general-
ized propagator to all values of d/2— 1. In particular, the K, _, are meaningful for all (also
complex) values of the parameter d. One immediately restores the familiar fact that for
4 =1 and d = 4 the propagator is proportional to the function K,;(mx). The form with
K_{(mx) which can also be met in the literature follows by noting that for noninteger v
we have K (2) = K_(z) (cf. (A.4)) and from the fact that K (z) are analytic in v.

The formula (2.6) also says that light cone singularities are of the same type for the
physical 4 = 1, d = 4 case as for 1 = 0, d = 2 (constant propagator in two dimensions)
as well as for A = 2, d = 6 (Pais—Uhlenbeck propagator in six dimensions). From (2.6)
the reader can easily convince himself about the analogies between a usual theory in two
dimensions (4 = 1, d = 2) and the theory of Pais—Uhlenbeck type in four dimensions
(A = 2, d = 4). The linear growth of potentials in the last two cases might explain the
quark confinement and this hope has nowadays motivated some authors to revisit the
old paper of Pais and Uhlenbeck (Ref. [4]) [14-16].

In particular, we infer from (2.5) and (2.6) that 4¢, (4, x) and 4g(4, x) are m-times
continously differentiable functions of x only for Re i > Re d/2+m. This property is
of course not connected with the specific order of K. (z) (we mean v = df2—4 or v=4A—df2)

and it is only the presence of the factor (v —x2+i0)*~%2 in (2.6) which is of importance
in this respect. This can be directly seen from the substitution of power series expansion

KJ(z)=z"" }E AWz 42 f B (v)z%* .7
k=0 k=0
into (2.6). Namely, it gives
21—1 . el i
Ag(4, x) = [(—xl)*“‘/2 y A () (m* x4 (mH 22 Z B.(») (m*x»)".  (2.8)
IIA) d

k=0 k=0

3. The generalized Feynman amplitude

In Section 2 we have shown that in d dimensions the generalized Feynman amplitude
L
T4 x) = 11:11 A (A, Xi€5) 3.1

for a graph G with L = L(G) lines and V = V(G) vertices is well defined for 4, > d/2
(real parts) for each / = 1, ..., L. For the sake of generality we are following Speer and
we are introducing different regulators for different lines of the graph (this is mandatory
for the analytic renormalization [10, 11]). In other words, 4 &= (4, ..., 1) e L. The ¢,
in (3.1) is the incidence matrix for the graph:
1if k=f,
ek, # ""1 lf k = il’ (3.2)

0 otherwise,
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(k =1, .., V), so that x,e,; = x;,—X;, Where x,(x;) denotes final (initial) point of the
I-th line.

We are of course interested also in other values of 4;—d/2 and in order to define (3.1)
in such a general case it is advantageous to transform (3.1) to p-space. To this end we
start from A, (4;, xxey) in the form (2.4). The (3.1) with (2.4) gives

L

( 1 d/2 A,m/2 ~ py 21
T3, x) = daya™
GES H(Z“’ZF(/I,)\/det Q)J J- H o
I= 0 0
xexp {i[ —(1/4)x,4,;0" 'x;~(m*>—in) Y. ]}, (3.3)
H
where
L
A = Sﬁ ¢ (3.4)
Lod %

i=1

It is easy to note that T,(4, x) actually depends only on ¥V —1 points & = x;—x, i # k
so that the exponential in (3.3) can be written as

exp {i[ —(1/H)&A,07"¢]},

where A’ is obtained from A4 by deleting k-th row and column (dim 4’ = V'—1). For the
Fourier transform we get
V-1

1 4
- 1 i
7?,(&,2)=('WJ'“J | | ddfiddka@,@eXP{—i( E Sipit X, E Pi>}
N~ i+k i=1

i=1
| 4

L (_i)l—d/Ze/’lmi/Z » 4 S
H (2“/2r(z,) Vdet Q> () (Z )(270"’ =D j J H

X do‘z"‘t}"—ﬂuz—1 f j H d¢; exp {i[_(1/4)£iA;jQ—léj—éipi'—(mz—in) Z “z]}a (3.5»
V(6)—1

where
33 p) = Qu)* fd'x exp (—ix Y. py)

plays the role of Dirac’s delta function in d-dimensions. Note that in (3.5) we have already
changed the order of ¢ and { integrations what is legitimate for 4, > d/2 (real parts).
In Appendix B we show that for the { integral in (3.5) (£ has d(V'—1) components) one
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obtains

§d%exp {i[ —(1/4)¢A®Q "¢~ Ep]}

_ )
—-d/2 .
= D)= @D V0 gt Q)V”[A (',f)] exp 3 ip— 7l Op;f,  (36)

where A (: :) denote minors of the 4 matrix.
For the analysis below it will be convenient to write our result in terms of structure

functions for the graph:
L
I I k
d(e) = ( oz,) A (k) , (3.7
H

L

Di(a) = (H a,) A ('; ]‘) : (3.8)

From (3.4) it is seen that the d(x) (D(x)) is homogenous function of degree L—¥V'+1
(L—V+2). In this notation our result reads

L 1—-di2 _Amif2
T4, p) = (%Q____e_._ ) m)'%s (Z P:) 444 (V—!)(\/det 9y !
”: 2921 (3) /det ©
H DY
x J- doo ™ [d(e)]™ Y2 exp {i [Z i ;((o)c) Op;—(m*—in) Z oc,]} . 39
o
[§]

This formula is of course meaningful also for complex values of d. In particular, ford = 4

i, j#k
we get the familiar d-?(x) factor under the & integral.

O s, 8

4. The singularities of the generalized Feynman amplitude

Our basic observation that the generalized amplitude (3.1) can be meaningless for
Ay < dJ2 (real parts) is reflected in possible divergencies of the ¢, integrals in (3.9) at o, = 0.
This can happen so because the function d(x) (defined in (3.7)) can vanish when some
a,’s are zero. Speer has analysed the zeros of d(x) for arbitrary graphs (including those
with overlapping loops) in four dimensions and has shown that the generalized amplitude
can be continued to a meromorphic function of 2 [10, 11]. From (3.9) we infer that this
property actually does not depend on the number of dimensions and the result with the
power of d(x) equal —d/2 which replaces well known power equal —2 for d = 4 case
which has been investigated thus far can merely affect the location of poles (in a;’s) in the
continued generalized amplitude. In this Section we shall find the position of poles in
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our general case. However, before doing so, we have also decided to repeat here some
most important steps in Speer’s construction of the analytic continuation because other-
wise even the notation in which we are going to write our final results (cf. eg. (4.12) below)
might become cumbersome without directly consulting the original papers of Speer
{Refs. [10] and [11]). The first part of this construction serves for isolation of zeros of
the structure function d(x) into powers of certain new variable. In the second part a pole
part and an analytic part of these powers are extracted.

Let us recall that in Refs. [10] and [11] Speer introduces first families E of nonover-
lapping subgraphs H of G, each H 2-connected or consisting of a single line, such that no
union of different H’s is 2-connected!. Assuming that the G itself is 2-connected we infer
that G also belongs to E. The next step is to define for each E a region D(E) in " where
order of a;’s is specified. This buys us the possibility of replacing the multiple « integral
in (3.9) by a sum over E’s of integrals over D(E). Further, in each D(E) one introduces
scaling variables t; (H € E) by setting

o =[] tw “4.1)

HileH

where t; € (0, 0> and 7;€ {0, 1> for H # G. Let us quote that under this change of

variables
Jx L(H)—-1
—= | = t R 4.2
(65) ]i[ " @2
H

d(@) = [] " E(), (4.3)
H
D) =t [] th "™F k(D). (4.4)
H

where £(H) denotes number of loops in H (Z(H) = L(H)— V(H)+ 1), the function E(t)
does not depend on #; and, most important, E(t) # O for t; > 0 (ditto the function
F,-"j(g)). For more details and, in particular, for proofs of (4.2)-(4.4) the Refs. [10] and
[11] should be consulted. It is the formula (4.3) which provides us with the anticipated
isolation of zeros of the structure function d(a). Note also that from (4.1) we can write

]'II ! = 1;[ LA, 4.5)
where

AH) = Y (4-1). (4.6)

lL;leH

! The graph is called 2-connected if it cannot be made disconnected by removing any vertex. From
the point of view of renormalization it is satisfactory to consider only 2-connected graphs because amplitudes
for graphs which are not 2-connected are just products of their 2-connected pieces.
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After the substitution of (4.2)(4.5) the expression (3.9) for the generalized amplitude
in d dimensions can be written as

n le H t?{(")—(ill)u(ﬂ,d)‘1[E(t):rd/2

O ey =
© ey 4

T(hp) ~ 2 Jdi

F H%G H3HEF
exp it —ﬁ ~-(m —-m)Zﬁ 4.7)
G E( ) 1 .
where
wH, d) = d¥(H)-2L(H) 4.8)

are superficial degrees of divergence of subgraphs H in d dimensions and B, = 5 ',
As expected, for the “physical” point 4, = 1 for all 4;’s the ¢ integrals in (4.7) are con-
vergent only for these H’s for which pu(H, d) < 0. For arbitrary A;’s the tg integrals in (4.7)
are of course convergent only for Re [A(H)—(1/2)u(H, d)] > 0.

The ty(H # G) integrals can be easily continued to regions Re[A(H)—(1/2 u(H, d)}>
—(k+1), k=0, by writing

1

AGHY=1/2p(H.d) ~1
Idt!ItH( YT ulA) i
°

k 1

_ (al/atil)f(f) ACH) ~ (1/2)u(H,d) — 1
- Z ACH) = (2, D o J At M. @9
I1=0

where the second term on the r. h.s. of (4.9) is already analytic in the above regions
(fltw) = )= 3 (1) (8'/0t}) fty) leg=0~ 11" ' at ty — 0). It is in fact possible to proceed
=0

so as in (4.9) because our

F
J(t) = [E@®)] " exp {ita [Pi E% Qp;—(m* ~in) z Bz]} (4.10

is infinitely differentiable function of #;’s. For the brevity of notation we shall below keep
1

on writing the | dry ... integrals so as these stand in (4.7) but we shall understand that in
0

tyy=0

such places the analytic continuations given by (4.9) are already substituted.
0
Now we are left only with the | dt ... integral in (4.7). This integral can be performed
0

with the help of formula analogous to (A.1). This formula can be still applied as we are
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always keeping # > 0. In such a way we finally get

L
__n1-ds2
7,0, p) = H (——(——)ﬂ———> exp {(xi/2) [L(G)+(1/2)(G, d)])

]

| 1 \271G) Vaero
X 449803t 0~ 'ITA(G) ~(1/D(G, d)] Q)" *5(E p) T, J - |
E O 0 H#G
w1 g - . Fi0) , OO
xdth;}(H) 1/2pu(H,d) I[E(E)] d/2 |:(m2__”1) z ﬁl'— Z i Fj(t—j QP,:I . (4.11)
[ i,j#k -

It is first on the level of this result when we may let # — 0. In accordance with con-
tinuity of the generalized propagators (2.1} in Q and in m?—in and from (2.2) we can
write

~ - (_. i)2—(3/2)d
T4 p) = H (W) exp {(ni/2) [L(G)—(1/)u(G, d)]} (4%/4i1 ~4)V 1
i
< @5(S, pATTAG) ~(1 /G, ) T, [ - § T degth= w34
E 0 0 H#G
2 . Ffj({) #(G,d) ~ A(G)
X [(m —in) Z Bi— z D: E(7) Pj:l . (4.12)

Let us recall that for the | dty ... integrals in (4.12) the expressions (4.9) should be subs-
[¢]

tituted.

5. The discussion of the singularities

From (4.9) we conclude that (4.12) constitutes the desired continuation of the gener-
alized Feynman amplitude to a function with simple poles on the varieties in #™*
which are sets of points satisfying

AH)—(12u(H, d) = 0, —1, =2, ..., 5.1

where A(H) and p(H, d) are given by (4.6) and (4.8), respectively. For A, > d/2 (real
parts, all /) the amplitude is of course singularity free, as it can be now seen from
L(H)

AH)—(1/2)u(H, d) = l; (la—d[2)+(d/2) [V(H)—1] (5.2)

(from (4.6) and (4.8)).
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The net result (4.12) can be also viewed as analytic continuation of the generalized
amplitude (at fixed values of 1,’s) to all (also complex) values of the parameter d. In
particular, for

d=4+e (5.3)

the poles will be located for values of & satisfying
AH)—(1/2)p(H, d) = (¢/2)%(H)—n, (5.4)

where n = 0, 1, 2, ... Note that for arbitrary values of 4,’s these are not necessarily rational
values of e. However, at the “physical” point A = 1 and for nonrational ¢ the amplitude
is not singular, as expected. At this point the singularities take place for values of ¢
satisfying (1/2Qu(H, )+ (¢/2)¥¢(H) = n(n = 0, 1,2, ...), i.e. for

— (5.5)

in agreement with well known results in dimensional regularization [6]; [7].
Let us fix the ¢ again and let us write (5.4) in the form
L(H)

l; {h—1-[e2L(M] L (H) - (1/2)n(H, 4)/L(H)} = —n. (5.4)

Herefrom it is seen that in the €™ spaces singularities take place for

L eP(H)  (12)p(H, 4)—n
0= 2L(H) * L(H)

(5.6)

Hence, for ¢ # [2n—u(H, 4)]/#¢(H) (i.e. ¢ nonrational) the point 4 = 1 never happens
to be a singular point in the generalized Feynman amplitude.

This variety in €™ which is characterized by n = 0 corresponds to the set of
points 4, = 1+ [eZ(H)— u(H, 4)]/2L(H). It is interesting to note how does the magnitude
of this dislocation of the singularity from 4, = 1 behave for perturbation orders tending
to infinity. To see this let us take as an example a scalar ¢}, (k even) theory. The “topo-
logical” relation for graphs in such a model reads

2L(H) = kV(H)~2E(H), (5.7)

where L(H) denotes, as before, the number of internal lines of the (sub)graph H, V(H) is
the number of its k-legged vertices and E(H) is the number of its external lines. Upon the
use of (5.7) we get

. eZH)-uH, 4) kj2—1
lim =g

s 5.8
s  2L(H) X (-8)

what means that in this limit the above dislocation is finite and depends only on the
assumed dynamics.
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APPENDIX A

In order to perform the Fourier transform (2.3) we represent the generalized pro-
pagator (2.1) as integral over the Feynman parameter:

. o
_jetmil2

(%)

A,(4, p) = doe* ™ exp [ia(pQp—m” +in)], (A.1)

0o

This formula is valid for Im (pQp—m?+in) > 0 what is just our case as we are keeping
n > 0, real. As the next step we write

. ©
_ ielm/Z

A—-1 d . 2 .
—FW daa fd p exp {i[ peQp+ px —a(m®+in)]}. (A2)
o

AF,n(l’ x) =

The change of order of the integrations which has been done in (A.2) is legitimate only if

{a’p 6‘ doc* | exp {ia[ pQp+ pxja—m*+in]}|

= [ d' | dao* " exp [—an(p, S0+ 1] = T~ * § d°p(p,d,.p,+1)™* < oo,
0

i.e. only for Re 1 > d/2. Note that without the nonrelativistic term #p,,,p, the above
estimate would be impossible. When keeping A in this region we can perform first the
d-dimensional integral. For doing this we make use of the formula (1.3) with the substi-
tution R = «Q. This gives

sey = S0 jdaa‘“"”“ exp {—ai(m® —in)] ~(1}49ixQ™ '}
Fl4s X) = = - - - o)ix X
24213y det Q J
(_‘i)l_d 2 . Ndj2=A 0 —(d/2~2)~1 2 . -1
2 (A)VdetQ 5

(A.3)

The form in (A.3) directly leads to the generalized Hankel functions in (2.5) [13]. Let
us also quote here, also for terminology reasons, that the relation between the generalized
Hankel functions K,(z) and Bessel functions of imaginary argument 7,(z) for noninteger v
reads

T I—v(z)_Iv(z)

K(2) = 5 T enm (A.4)
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APPENDIX B

For the evaluation of the

§ d% exp {i[ —(1/4)A'®Q ¢ —¢p]}

integral which has appeared in (3.5) we apply the formula (1.1) with R = —(1/4)4’ @0,
where dim 4’ = V—1. For the determinant we get

det (—iR) = {det [(i/4)A']}(det @™ ")™V*" = (i/4)*" ~V(det A')%(det @)V ™' (B.1).
and for the inverse
Rj' = —4(4'"",0 (B.2)
The substitution of (B.1) and (B.2) into (1.1) gives that our integral
§ d* exp {i[—(1/4)¢A'®Q™'¢~¢pl}
= 2@DN(ij4)" @D 00 det 4) " exp [i(pa' T @ QP)]. (B.3)

The formula (3.6) is written in a notation where detd’ = A(:)(A (:) denotes the

minor of the A matrix with the factor V included in its definition) and (4'-!);

ki k
- A(kJ')/A(k)'
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