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Similarities in the high-energy behaviour, elastic and inelastic collisions, of hadrons
and nuclei are interpreted as due to the existence of a universal interacting hadronic matter
distribution function. Differences arise from the different geometrical dimensions which
are themselves determined by the quark content. We formulate the idea in an eikonal model,
the only parameters being geometrical factors, the transverse radius and the opacity param-
eter. The model describes forward elastic scattering (hadron-hadron, hadron-nucleus,
nucleus-nucleus interactions) and particle production at high energies. We discuss the relation
of our model to the Glauber model as well as to the quark model and to the geometrical ideas
in QCD.

1. Introduction

Recently data have been accumulating on high energy inelastic production and elastic
scattering in reactions of hadrons with hadrons, hadrons with nuclei, and nuclei with
nuclei. In general we shall refer to these data and processes as hadronic data and hadronic
processes, respectively. The global features of the hadronic data show some intriguing
similarities. If we look at inelastic collisions, we observe that average multiplicities have
similar energy dependences and are of the same order in all hadronic processes; the multipli-
city distributions show remarkable KNO universality; the fast particle inclusive density is
roughly the same in all hadron induced reactions [1]. On the other hand at high energy
from hadron-hadron and proton-deuteron data the elastic and inelastic cross-sections
show similar rises with the energy, the ratio ¢°'/c" being quite constant [2, 3] and the .
rise being peripheral in the impact parameter [2, 4]; the differential cross-sections have
sharp shrinking peaks in the forward direction followed by a large |#] flattening with or
without diffraction zeros [2].

* Address: CFMC, Instituto Nacional de Investigagao Cientifica, Av. Prof. Gama Pinto,
2 —Lisboa 4, Portugal.
** On leave of absence from Department of Physics, University of Wuppertal, Germany.

(65)



We believe that these global similarities of the data reflect global similarities of the
geometrical distribution of the hadronic matter in hadronic processes: hadron-hadron,
hadron-nucleus, and nucleus-nucleus collisions. Leaving for a moment the discussion
of the content of our idea we give first its precise formulation in the framework of an eikonal
model. Let Im T,y (s, £) be the imaginary part of the high-energy diffractive amplitude
in an hadronic AB collision (A, B = hadron, nucleus). We neglect the real part and write
Im T,5(s, 1) in the impact parameter representation as:

Im Typ(s, 1) = Rap ]? BdBJ (PR ‘/:) [1 —e_AABG(m]’ ()
o

where f = b/R,; is a scaled impact parameter variable, G(f) is an universal function
of B, the universal eikonal, and 1,5, R,p are reaction dependent parameters. G, A and R
may depend on energy. The observed similarities in the data are interpreted as arising
from the universality of the function G(B). The parameters 4 and R are parameters charac-
terizing the interacting hadronic region: A, the opacity parameter, is related to the matter
density averaged over the longitudinal range of the interacting region while R measures
the transverse hadronic size.

Equation (1) is the equation for the scattering of infinitely composed extended
objects with localized elementary interactions in the Chou-Yang sense {5]. Universality
of G(B) arises here from the assumption that these elementary interactions and the matter
distribution inside the hadrons (particles and nuclei) are universal. 2 and R are not universal
and this happens because in our picture the amount of interacting matter varies from
reaction to reaction. As a consequence of the internal symmetry structure of strong
interactions, the matter clusters and the number of clusters is given by the number of
valence quarks. So, it is convenient to refer all quantities to the cluster-cluster interaction
which we simply call the quark-quark interaction. The integral over the eikonal y(= AG)

Ig = jXAB(B)bdb = A’ABRiBIqq’ (2)

where I, is the corresponding integral for the quark-quark interaction, with i, =1
and Ryp = Rap/R,,, if the constituents are not correlated, gives the amount of quark
interacting centres in an AB collision. More precisely:

}'ABRiB = N,Np, (3)

where N,(Ng) is the number of quarks in A(B). It will turn out that this equation is a very
strong constraint in our approach.

It is perhaps already clear at this stage that we are suggesting to describe high-energy
interacting nuclei without making use of nuclear physics. In other words, particles and
nuclei are, in our approach, considered as single hadrons (“atomic” bags of quarks) the
expectation being that nuclear effects (“molecular” effects) should be negligible. We shall
discuss later the extent of the validity of this limit. We would Lke just to mention now
that the hadronic matter we consider here is interacting and highly energetic hadronic
matter with properties which may be very different from the properties of the usual static
nuclear matter.
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The main content of this paper is the discussion of Eqs (1) and (3) (Section 2) with
applications to hadron-hadron, hadron-nucleus and nucleus-nucleus collisions (Section 3).
In Section 4, we present some conclusions.

2. General discussion of the eikonal formula

Let us now further discuss some properties of our Eq. (1). For the inelastic and total
cross-sections we obtain, from Eq. (1),

GK'B =3 RiBaqq¢(2’1AB)s 4)
and
0% = Ris0eq@(dan); (%)
where
®(2) =y | pdp[1—e 9P, 6

y being such that #(1) = 1 and o, being a reaction independent normalization quantity
which might be interpreted as the quark-quark total cross-section. This function and all
its derivatives are monotonic functions of 4 since G is positive. @ has the limits*

S(A) ~4 for -0, )

and
®(1) > 0 for A — 0. (8)

The ratio ¢'"/6** is, in the two limits, 1 and %, respectively, and this tells us that as 4
increases (as more quarks are involved) one approaches the black disc limit as experimen-
tally observed for heavy nuclei.

Another parameter of interest in reactions with nuclei is the effective number of
collisions v,p for the reaction of particle P with the nucleus of mass number A(N, = 34)

o,in

- 13

Vap = A——. ©)
Gap

Using Eqs (3) and (4) we obtain for v,p,

- P(24p)

Vap = m s (10)

where

1
Y(A) = 1 D(4), 11

1 In fact the expansion parameter should by AG(0) instead of simply 4 as it is clear from Eq. (1).
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is a monotonically decreasing function of 1 varying between the constant y { fdBG and
zero. For light nuclei 4,p is of the order of A, and the effective number of collisions is
of the order of 1. As A,p — o0 v,p tends to infinity but not as fast as i,p. As we shall
see later, this fact explains the weak A dependences of v,p experimentally observed
(Vap ~ A%?27%26), Equation (3) suggests that 4,p/A,p and R3p/R%p should be independent
of P and be only properties of the nucleus A. In this case we see from Eq. (10) that v,,
increases as the number of quarks in the beam particle P increases. Shadowing is stronger
in reactions with protons than in reactions with pions, as is well known.
Finally, we note that v,p is smaller than I of A,p < Zpp.

3. Application

We try next to test our Eq. (1) and check the constraint (3). For the input G(f) function
we use the eikonal obtained from the analysis [6] of the ISR pp data [7] at /5 = 53 GeV.
In order to fix 4 and R? one needs ¢'* and da/dr at small |¢| (the slope parameter) or o'
and ¢'. As far as hadron-hadron scatterings are concerned, Eq. (1) was in fact already
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Fig. 1. The function ®(4) as defined in Eq. (6)

successfully tested before with the results 1,,/2,,~ N /N, = 3, R,,/R,, ~ 1 and Eq. (3)
being satisfied [6]. For reactions with light nuclei we use pd data [3, 8, 9] (from FNAL
and ISR), pHe data [10] (slope and ¢') and dd ISR preliminary data [9]. Since the
various data are not measured at the same energy, we cannot avoid any longer the question
of energy dependence. With rising cross-sections some of the parameters or functions
in Eq. (1) must have enefgy dependence. To take that into account we make the simple
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geometrical scaling approximation [6] of considering A4 a constant, G(f) a scaling function
and ¢, an energy-dependent quantity. In this limit (1), Eq. (6), is strictly energy-inde-

pendent and oly/o%s = const. and v, = const. as experimentally observed at high

energies.

For later use, we show the function @(4) properly normalized in Fig. 1. From the
pp data we can fix o,,. We arbitrarily choose R,, =1 and find 6,,(\/s = 53 GeV)
= 5.92mb?. The energy dependence of o,, is within our model that of af,‘:, and can be

parametrized as
Oqq = 4.92mb (1+0.017 In 5)%, (12)
(\/ 3, the centre-of-mass energy of the qq system, in GeV).

-

=)

{mbiGeV?)
]

T T T T T T T T T T T

pd dd
VE=53 GeV VE=63GeV | || VE=7Gev

—
he)
I
L2

10’

T

T T
p Do

10°

T T T
Y e
1 ﬁ‘;
9}
H \Yt

o]

L Co L

-3 1 t } L 1 i | 1
107 55 0%0608 02 04 0608 02 040608

-t (GevY)
Fig. 2. The differential cross-sections for pd, dd and pHe. Data are taken from Refs. [8] and [9]. The solid
lines represent our results. The dip in do/dt(pHe) has been partially filled in by the geometrical scaling real

part [6], assuming that the ratio of real to imaginary part in pHe is equal to the corresponding ratio in pp
scattering

2 Within our model only the ratio cqul—tf‘q is fixed. So, for instance, if the true quark-quark radius
is much larger than Ry, the quark-quark cross-section is correspondingly larger than our value.
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The fits to pd and dd data are presented in Fig. 2 and for comparison we have also
shown the predictions for do/dt of pHe at an energy rather low for our model. The param-
eters 1 and R in this case are fixed from the slope of do/dr and ¢'** of pHe scattering at
that energy [10]. The fits are satisfactory in the small |7| region but become rather poor
at larger [¢| and relation (3) is not well satisfied (see the Table). Note that our model

TABLE
The parameters 4 and R? and the product AR?
Reaction A R? AR?
pd 43+0.1 3.30+0.04 14.2+04
dd 5.2+0.2 5.33+0.06 27.8+1.0
pHe 11.7+0.9 3.07+0.10 359+238
HeHe 27.0+1.8 5.18+0.30 139.5+9.0
NBe 10.5+0.9 6.24+0.40 65.7+9.0
NC 15.0+2.0 6.10+0.50 91.5+15.5
NAI 28.3+4.5 7.79+0.80 220.4+389
NCu 59.4+17.1 10.2+1.5 603+ 135
NPb 81.0+27.0 21.6+4.0 1755+ 540
NU 324.01180.0 15.0+5.0 4860+ 2700

produces no dip in pd and dd scatterings but in pHe. The number of dips depends on the
value of 1. Numerical calculations have shown that for the given function G(f) dips appear
only if A = 8.

From the available ¢i® and ¢* data [10, 11] for heavy nuclei we have calculated A
and R, solving Eqs (4) and (5) numerically with the aid of the function &(1) shown in Fig. 1.
The results are also presented in the Table. In Fig. 3 we show a test of relation (3). We
have here included our earlier results for hadron-hadron scattering®. SU(3) breaking,
that is the fact that a strange quark interacts weaker than a non-strange one, is taken
into account by counting a strange quark not as 1 but as a smaller number. This number
is fixed from the KN data and has the value 0.31.

It is striking that Eq. (3) is rather well satisfied for particles and nuclei. From this
point of view it seems reasonable to say that at high energy, interacting hadrons and
interacting nuclei behave similarly and both can be considered as single bags of quarks.
In the case of light nuclei, however, it seems that care must be taken of nuclear effects.
From the derived values for 4 and R in the case of the deuteron, we see that the deuteron
behaves as a relatively transparent object (4,4 =~ Agp < Ayp) but is very large (R,q ~ 2R;)
as expected for a loosely bound system®. It is quite obvious that in loosely bound systems

tot

3 We now add the results for Z-p (Agp = 9.63+0.9, RE, = 0.78:+0.05) calculated from the data of
Blaising et al. [12] at 17.8 GeV.

“ It is amusing to note that the obtained values for 54 and R4 are close to the values found in a two-
dimensional model of the deuteron as made up of two touching discs (the nucleons): Ayg = A,p/2,
Rya = 2R,
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Fig. 3. Test of Eq. (3). The AR? values are taken from the Table and from Ref. [6]. pp scattering is used as
normalization and K*p to estimate the effective value of a strange quark
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Fig. 4. The total and inelastic cross-sections for pion-nucleus scattering. The o‘;:‘A data (@) are taken from
Denisov et al. [11]. The total cross-sections (O) are our predictions
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the nuclear effects should be important. The deuteron cannot be well described as a six-
-quark bag because it is rather, as well shown by the large radius, a two-nucleon system®.
As a consequence in interactions with the deuteron and light nuclei the nuclear structure
manifests itself in the large |¢| region (compare Fig. 2) and the effective number of inter-
acting centres is smaller than what is expected using Eq. (3).

For nA scattering, no ¢' data for heavy nuclei are available but only ¢V, has been
measured [11]. So, we cannot calculate 2 and R and check relation (3) further. However,
we can turn around our argumentation and use our model to estimate ay,. We assume
that Eq. (3) holds and find 4., from

xA - NAaqq¢(213A)/A:A) (13)

making again use of Fig. 1. ¢! is then calculated from Eq. (5). The results are shown

in Fig. 4 and are subject to experimental confirmation.

We turn now to inelastic production. In the framework of geometrical models the
features of the data mentioned in the beginning and many other properties of the data
can be easily reproduced by extending to hadron-nucleus and nucleus-nucleus collisions
the geometrical ideas developed for hadron-hadron collisions [14]. As it is well known
in collisions of extended objects the number of produced particles is related to the matter
overlap. As the distribution function G(f) in Eq. (1) is assumed the same in all processes
this guarantees that the KNO distribution function is, at least approximately, universal
{14]°. In order to estimate the average multiplicities we note that in an AB collision, each
quark in A excites vy quarks in B (vg is the effective number of collisions in B) and
similarly each quark in B excites v, quarks in A”. In general we thus have

Nag = 5 (Va+v)n, (14)

where n is the average multiplicity for the basic quark quark process. In hadron-hadron
processes, shadowing effects are small and v, ~ vg >~ | or n, n ~n,,=n. In
hadron-nucleus collisions, we recover, from (14), the usual fragmentation formula.

fia = L (1+V0)0. (15)

For nucleus-nucleus processes, A, B = nucleus, Eq. (14), combined with (15), may be
written as

;l_AB = HA'{'EB"E (16)

5 Matveev and Sorba [13], for example, estimated the probability for the deuteron to be in a six-quark
bag. They found a value of the order of 10%;.

¢ The KNO universality is not much affected by shadowing because in the definition of KNO func-
tion and of the moments of the KNO distribution, all quantities are normalized in such a way that shadow
effects in numerator and denominator tend to cancel.

7 Note that v, is here treated in an approximate way being indifferently interpreted as the number
of collisions with a quark or with a proton because in collisions with elementary hadrons, shadow effects
are small.
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Equation (14) in general describes a very slow increase of the multiplicity as the atomic
weight increases. In the case of nucleus-nucleus collisions it should be interesting to check
the validity of Eqs (15) and (16).

4. Conclusions

We should like now to make some concluding remarks.

4.1. Comparison with the Glauber model

In the Glauber model [15], in particular for low A processes, apart from the knowledge
of the basic pp or np amplitude detailed knowledge is required of the nuclear form factor.
The slope of do/dt at small |¢] is essentially an energy-independent quantity and the appear-
ance or not of dips is related, in pd and nd scattering, to the amount of d wave contributions
to the wave function. In our case the rough features of the data are fixed by the eikonal
and the two parameters A and R. Shrinkage is expected to occur in a way similar to pp
scattering. The possibility of dips is controlled only by the value of A: for 1 = 8 dips
must occur at high energies; the number of dips increases with i,

In applications of large 4 the Glauber model depends crucially on the geometrical
assumption normally made, R, ~ A'/3 and the model in good approximation eikonalizes.
For large A our Eq. (1) is then, apart from the energy dependence we easily incorporate,
equivalent to the Glauber formula: both Eq. (1) and the Glauber model fit ¢'" and &'
successfully.

However, there is one important difference: our eikonal deviates drastically from the
Glauber eikonal given by the integral over the nucleon density (e.g., the Wood-Saxon
distribution) multiplied by the elementary inelastic cross-section. Also the usual nuclear
radius (~ 4'/3) is not equal to our parameter R (— which behaves as 4%2% —) but rather

equal to the radius v {b*» of the absorption region defined by

. , 5‘ ﬁsdﬁ(l __e'-ZlG(ﬂ))
b =R [ Bdp _e—zlG(ﬂ)S .

amn

Notice that only for small A and approximately Gaussian behaviour of G is (%) ~ R

4.2. Inclusive longitudinal distribution

Our approach is concentrated on impact parameter and one, so to say, averages over
the longitudinal distributions of the hadronic matter. Information on rapidity distributions
is then lost. However, one prediction, typical of geometrical models, we can still make,
namely we expect strong positive forward-backward correlations. In particular, in
a hadron-nucleus h-A collision, we expect

;Back = ;Ah;iFor’ (1 8)

(compare Eq. (15)).
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4.3, Geometry and long-range correlations

In the conventional existing models for strong interactions the universality of the
eikonal and the determining rdle of the parameters (4, R) are properties very difficult
to understand. Most of the ideas and models in strong interaction high-energy physics
(the multiperipheral model, for instance) are based on the dominace of short-range correla-
tions in impact parameter (and in rapidity). Data have been trying to tell us for quite some
time that long-range correlations in impact parameter (and in rapidity) may be an essential
property of strong interactions. The geometry of strong interactions is not an empty space
geometry where the short-range correlation processes occur without much interaction
with the boundaries, but rather a dynamical geometry in which the geometrical size in b
(and in y) fixes the scale of the dynamics. It is interesting to note that in QCD the dominant
high-energy amplitude is only non-vanishing in the presence of physical transverse dimen-
sions and the strength of the effective coupling is somehow related to the transverse ha-
dronic size [16]. The dynamics is then “determined” by the geometry and the geometry
“determined” by the quark content — as Eq. (3) and Fig. 3 suggest.

44. The unitarity equation

It is well known that elastic and inelastic scatterings are not unrelated processes but,
on the contrary, they are connected by the unitarity equation. Most of the models on high
energy strong processes involving nuclei are unable to include both the elastic and in-
elastic effects. We think that our geometrical approach being rather naive makes, however,
the connection between elastic scattering and inelastic production in a quite natural way.
Our results on elastic scattering, Eq. (1) and Fig. 3, as well as our results on particle produc-
tion, Eqs. (16) and (18) are fairly reasonable.

One of us (P.K.) would like to thank the hospitality of the CERN Theoretical Physics
Division. We also would like to thank B. and F. Schrempp for careful reading of the
manuscript.
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